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Abstract

We propose an end-to-end deep learning architecture for simultaneously detecting objects and recovering
6D poses in an RGB image. Concretely, we extend the 2D detection pipeline with a pose estimation module
to indirectly regress the image coordinates of the object’s 3D vertices based on 2D detection results. Then
the object’s 6D pose can be estimated using a Perspective-n-Point algorithm without any post-refinements.
Moreover, we elaborately design a backbone structure to maintain spatial resolution of low level features for
pose estimation task. Compared with state-of-the-art RGB based pose estimation methods, our approach
achieves competitive or superior performance on two benchmark datasets at an inference speed of 25 fps on
a GTX 1080Ti GPU, which is capable of real-time processing.
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1. Introduction

Determining relative 3D location and orientation
between the object and the camera is a classical
research issue in computer vision. Applications,
such as augmented reality, autonomous driving and
robotics, put forward new demands on the accuracy
and speed of 6D pose estimation algorithms. In the
past few years, commodity depth sensors have facil-
itated many RGB-D based pose estimation meth-
ods. However, active depth sensors are limited to
be used in short range scope, and consume intensive
energy. Therefore, RGB based 6D pose estimation
methods are more practical for real-time mobile ap-
plications.

Traditional RGB based pose estimation methods
mainly resort to keypoint and edge matching to es-
tablish 2D-3D correspondences. Then 6D poses are
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calculated using a Perspective-n-Point (PnP) algo-
rithm. These methods are effective for high qual-
ity images of richly textured objects and scenes.
Nonetheless, for poorly textured objects under oc-
clusions and changing illuminations, the 6D pose es-
timation remains a challenging problem. Recently,
the introduce of deep learning techniques, especially
convolutional neural networks (CNN), has boosted
the performance of 6D pose estimation. There ex-
ist two main strategies to employ CNN to estimate
6D poses. The first strategy is to directly regress
the pose parameters [1, 2] or viewpoints [3]. These
methods are typically used for pose initialization,
followed by refinement to improve pose accuracy.
Approaches using the second strategy learn to pre-
dict the 3D model coordinates corresponding to im-
age pixels [4] or 2D projection locations of the ob-
ject vertices [5, 6]. Benefited from the strong repre-
sentation capability of CNN, they can establish 2D-
3D correspondences under challenging conditions,
and achieve state-of-the-art performance on multi-
ple 6D pose benchmark datasets.

In this work, we develop an end-to-end trainable
network to support new demands of real-time 6D
pose estimation. Our network takes RGB images as
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(a) The strategy of Tekin et al. [6] (b) Proposed indirect regression strategy
Figure 1: Illustration of proposed indirect strategy for image coordinate regression. The yellow rectangles and the green
rectangles represent anchors and ground truth bounding boxes, respectively. The cuboids represent 3D bounding boxes of an
object. In (a), Tekin et al. [6] regress all the image coordinates of 3D bounding box vertices from the left top corner of an
anchor. Whereas the proposed strategy (b) utilizes 2D detection results (blue dashed lines) as intermediaries to reduce the
length and variance of regression targets.

inputs, and simultaneously detects objects and es-
timates their poses in single forward pass. Inspired
by BB8 [5], we adopt the second strategy to predict
the image coordinates of 3D bounding box vertices
in pose estimation phase. Firstly, we propose an
indirect strategy to regress the image coordinates
based on 2D detection results for better localization
precision. In contrast to a recent similar work [6],
we utilize the 2D bounding boxes as intermediaries
and calculate the image coordinate regression tar-
gets based on their centers. As illustrated in Fig. 1,
we use short range offsets to refine error-prone long
range offsets. The proposed strategy can remark-
ably reduce the length and variance of regression
targets, which is helpful for stable training and ro-
bust prediction. Secondly, we elaborately design
the network structure to maintain spatial resolu-
tion of low level features, which is demonstrated
to be critical for accurate pose estimation. More
specifically, we pay attention to the gap between
the image classification and the pose estimation
problem. Traditional backbones designed for im-
age classification have large down-sampling factors
to extract highly abstract features, which are dis-
criminative for inter-category differences. Whereas
pose estimation focuses on appearance variation
from different perspectives of a few specific objects.
Therefore, we attempt to preserve details and struc-
tural information by maintaining the resolution of
low level features. Comprehensive experiments are
performed on two wildly used 6D pose estimation

benchmarks, i.e., LINEMOD dataset [7] and OC-
CLUSION dataset [8], and the results show that
our approach competes with state-of-the-art RGB
based pose estimation methods even when they are
used with post-refinements involving depth infor-
mation. In summary, the main contributions of our
work are as follows:

• We propose an indirect regression strategy
which fully utilizes 2D detection results to im-
prove 3D vertices localization precision.

• We specifically design a backbone structure for
pose estimation task by maintaining the spatial
resolution of low level features.

• We achieve state-of-the-art pose accuracy on
the LINEMOD dataset and the OCCLUSION
dataset using RGB images only with real-time
processing capability.

The rest of the paper is organized as follows. Af-
ter reviewing related works in Section 2, we detail
each component of our method in Section 3. Sec-
tion 4 presents the ablation experiments and com-
parison with the state-of-the-art methods. Finally
conclusions are summarized in Section 5.

2. Related Work

In this section, we briefly review the extensive lit-
erature on 6D pose estimation, mainly focusing on
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recent representative works. Most previous studies
on pose estimation are based on reasonable assump-
tions of priori knowledge and input forms. The pri-
ori knowledge generally includes calibrated cameras
and available 3D models, and the input forms vary
from monocular RGB images to RGB-D data or
point clouds.

2.1. RGB-D methods.

In the last few years, the emergence of com-
mercial depth cameras has facilitated the devel-
opment of RGB-D based pose estimation meth-
ods. For example, Hinterstoisser et al. [7] pro-
posed surface normal template matching for 3D
point clouds. Several variants of Point Pair Fea-
ture [9, 10] were proposed to improve the robustness
against background clutter and sensor noises. Kehl
et al. [11] employed a convolutional auto-encoder
to regress descriptors of locally-sampled RGB-D
patches for 6D vote casting. Although achieving
promising performance, RGB-D based pose estima-
tion methods generally involve sampling and vot-
ing schemes, which are computationally expensive.
Furthermore, acquiring depth information is energy
consuming, and the depth data usually contains
noises and holes due to specularity. Therefore, in
this work we mainly focus on RGB based 6D pose
estimation methods for efficiency and usability.

2.2. RGB methods.

Given a set of 2D-3D correspondences, 6D pose
estimation of an object instance has been for-
mulated previously as a pure geometric problem,
known as the Perspective-n-Point (PnP) problem.
Several closed form [12] and iterative solutions [13]
were proposed in the literature. However, establish-
ing 2D-3D correspondences between RGB images
and 3D models is a non-trivial task. In terms of this
issue, traditional pose estimation approaches can
be categorized into keypoint-based methods and
appearance-based methods. Keypoint-based meth-
ods [14, 15] resort to matching local features to es-
tablish 2D-3D correspondences, followed by a PnP
solution to calculate 6D pose parameters. Despite
the high precision, they are slow due to feature
extraction and inadequate for addressing texture-
less objects. Appearance-based methods bypass the
troublesome procedure of determining 2D-3D cor-
respondences using template matching [16]. These
methods can roughly determine the pose parame-
ters, nevertheless the number of templates grows

sharply when a more accurate estimation is re-
quired. Currently, the research hotspot of 6D pose
estimation has focused on weakly textured objects
under changing illuminations and occlusions. A
large number of methods [17, 18] have adopted pop-
ular machine learning techniques, such as random
forest and deep neural networks, to cope with the
challenges of complex conditions.

In recent years, CNN has been successfully ap-
plied to many computer vision tasks, including 6D
pose estimation. In terms of the output form, there
exist two main strategies to utilize CNN for predict-
ing 6D poses. In the first class, CNNs directly yield
continuous pose parameters or discretized view-
points. To name a few, PoseCNN [2] and Deep-
6DPose [1] were designed to detect and segment ob-
jects in the input image, meanwhile regress convolu-
tional features of the objects to 6D pose parameters.
SSD-6D [3] discretized the pose space in the form of
viewpoint and inplane rotation, and then extended
SSD [19] with a pose classification branch. Sunder-
meyer et al. [20] proposed Augmented Autoencoder
to learn implicit representations of object orienta-
tions in latent space. These methods follow the
paradigm of appearance-based methods, and usu-
ally rely on post-refinement to improve pose accu-
racy. Approaches in the second class adopt the phi-
losophy of keypoint-based methods, learning to pre-
dict 2D-3D correspondences between the RGB im-
ages and the 3D models. In [5, 6, 21] the CNNs pre-
dicted 2D projection locations of 3D bounding box
corners in the input images. [6] extended YOLO
[22] to directly regress the coordinates, while [21]
predicted heatmaps from sampled image patches to
reduce the influence of occlusions. These methods
are able to establish 2D-3D correspondences under
challenging conditions, followed by a PnP solution
to achieve accurate pose estimates on multiple 6D
pose benchmark datasets.

Early works [23, 24] treated object detection and
pose estimation as two separate problems. They
typically relied on off-the-shelf 2D detectors to lo-
cate the objects of interest in advance. However,
due to the inevitable localization errors, this multi-
stage pipeline often suffers from inaccurate and re-
dundant detections, which can lead to inefficiency
or even failure. Moreover, the ability to identify
poses of objects may in turn improve the perfor-
mance of detection. Therefore, several state-of-the-
art methods [1, 3, 6] attempted to augment 2D de-
tectors for 6D pose estimation, integrating multi-
task supervision information. We also follow this
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trend to leverage the success on 2D object detec-
tion for 6D pose estimation in our work.

3. Approach

Our goal is to develop an end-to-end framework
for simultaneous detection and 6D pose estima-
tion in real-time. Single shot 2D object detectors
[19, 25] have shown impressive performance on the
first task. Motivated by [6], we extend 2D detection
pipeline to predict 2D projections of 3D bounding
box corners for each object instance in the image.
Then we can calculate the 6D pose with an efficient
PnP algorithm [12] given these 2D-3D correspon-
dences. It is worth noting that Tekin et al. [6]
totally ignore the 2D detection ability of their ex-
tended version of YOLO [22], whereas we propose
to indirectly regress the image coordinates based
on intermediary 2D detection results to improve lo-
calization precision. Furthermore, we construct our
architecture properly and demonstrate that main-
taining the spatial resolution of low level features is
crucial for achieving good pose estimation results.
Our approach significantly boosts the accuracy of
Tekin et al. [6] and meanwhile retains the capabil-
ity of real-time processing. The schematic overview
of proposed network is shown in Fig. 3. We now
describe each part of our approach in more detail.

3.1. Problem Formulation

Pose estimation aims at retrieving the 6 Degree-
of-Freedom (6-DoF) transformation of the object
coordinate frame with reference to the camera co-
ordinate frame. The geometry of the coordinate
frames is presented in Fig. 2. The object self-
centered frame OoXoYoZo and the camera frame
OcXcYcZc are related by the 3D rigid transforma-
tion

xc = Rxo + t, R ∈ SO(3) (1)

where xo and xc denote 3D coordinates of the same
point in object frame and camera frame, respec-
tively. R is a 3×3 rotation matrix which rotates the
object frame to align with the camera frame and t
is the translation vector equaling OCOO. Then the
perspective projection procedure can be modeled as(

xp

1

)
∼ K(R|t)

(
xo

1

)
(2)

in which xp represents the 2D image projection lo-
cation. The symbol ∼ means equal in homogeneous
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Figure 2: The geometry of the object self-centered frame
and the camera frame. The red points represent the 3D
virtual vertices related to the 3D model. The corresponding
projection locations on the image plane are denoted by the
yellow points.

manner, and K is the inner calibration matrix as-
sumed to be known. One critical issue for most pose
estimation algorithms is to establish accurate and
robust 2D-3D correspondences. For weakly tex-
tured objects, however, it still remains a challenge.
In this work, we establish 2D-3D correspondences
by means of predicting the 2D image coordinates
of 3D bounding box corners, inspired by [5]. Given
these 2D-3D correspondences, we calculate 6D pose
parameters by solving a set of equation 2.

3.2. Network Architecture

Tekin et al. [6] select YOLO as base framework
for extreme speed/accuracy trade-off. In this work,
we elaborately construct our network integrating
the Feature Pyramid Network (FPN) [26] and SSD
[19] for simultaneous detection and 6D pose esti-
mation. The multi-scale architecture and anchors
of various aspect ratios allow for smooth search over
many differently-sized features in a single pass. As
shown in Fig. 3, the input RGB images are resized
to 448 × 448 and fed into the backbone network
constructed on a modified ResNet architecture [27]
which we denote by ResNet-h. The origin ResNet
down-samples too fast at the first several layers,
losing vast quantities of details and structural in-
formation which are critical for pose estimation. In
ResNet-h, we remove the max pooling layer in Stage
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1 of the original ResNet to keep high spatial resolu-
tion of low level features for accurate localization.
Thereby, the output of ResNet-h Stage 3 has strides
of 4 with respect to the input image. We notice that
several works [28, 29] proposed to maintain the spa-
tial resolution of features for detection and semantic
segmentation. However, no similar structure has
been specifically designed for 6D pose estimation
task as far as we know. Furthermore, both [28]
and [29] kept high spatial resolution in deeper lay-
ers, whereas we demonstrate that maintaining the
spatial resolution of low level features can be more
effective and efficient for pose estimation task. In
Sec. 4.2, we compare our backbone structure with
those of [28, 29] in terms of both pose accuracy and
computational cost.

Following [25], We branch off after ResNet-h
Stage 3 through Stage 5, and then attach top-down
and lateral connections to extract multi-scale fea-
tures over the image. P6 and P7 are successively
down-sampled by a 3× 3 stride-2 convolution layer
to cover large objects. The top-down pathway and
lateral connections compensate for the lack of se-
mantic information due to maintaining high spatial
resolution of features. We use (ws, hs, cs) to denote
the dimensions of the feature map at scale s, where
cs is set to 256 for all feature levels P3 through P7.
Each feature map is convolved with a set of 3×3×cs
kernels to jointly classify the objects, refine the 2D
bounding boxes and regress the projection locations
of the 3D control points. We create Nanchor anchor
boxes at each location of the feature maps with var-
ious sizes and ratios. Positive and negative anchor
boxes are decided by the overlaps with the ground
truth 2D bounding boxes. Each positive anchor box
is assigned a length C one-hot vector of classifica-
tion targets, and a length 4 vector of box refinement
targets, along with a length Npt × 2 vector of coor-
dinate regression targets. The term C denotes the
number of object classes excluding the background,
and Npt is the number of 3D control points, which is
set to 8 in our implementation. Then the output of
Detector & Pose Predictor at scale s is a 3D tensor
of size (ws, hs, Nanchor× (Npt×2 + 4 +C+ 1)). We
use anchors at three aspect ratios {1 : 2, 1 : 1, 2 :
1}, with sizes of 252 to 2242 on pyramid levels P3
to P7, respectively. The total number of anchor
boxes over the whole image adds up to 66836 in or-
der to cover the variety of objects in terms of scale
and shape. Meanwhile, our method still runs at a
fast speed thanks to the fully-convolutional archi-
tecture.

Both SSD-6D [3] and our model adopt a multi-
scale architecture to estimate poses for objects of
various sizes. In contrast to their structure, our
model is more efficient in two aspects. Firstly, we
condense the channels of features P3 through P7
to 256, which is much smaller than 384 to 1536 in
SSD-6D. Secondly, our pose predictor is consider-
ably lighter due to an efficient pose representation.
Both of these advantages can reduce the computa-
tional cost in pose estimation. Therefore, although
maintaining high spatial resolution of features, our
approach is substantially faster than SSD-6D as
shown in Table 6.

3.3. Training and Inference

We construct synthetic training sets to solve the
problem of insufficient annotated data. The train-
ing poses for each object are selected as in [5, 6] such
that the upper hemisphere is sparsely covered. We
take random images from MS COCO dataset [30]
and resize them to 640×480 as background to avoid
overfitting to the scene context. The segmented tar-
get objects are scaled by a factor of s ∈ [0.8, 1.2] and
randomly placed onto the background. we also ap-
ply various color augmentation by randomly chang-
ing the hue, saturation, exposure and contrast of
the images. As suggested in SSD [19], we select
hard negatives anchor boxes so that the positives-
negatives ratio is 1:3, to achieve fast convergence
and stable training.

We extend the MultiBox loss of SSD to take im-
age locations regression of 3D control points into
account. Given a set of positive boxes Pos and
hard-mined negative boxes Neg, we train our net-
work by minimizing the following loss function:

L(Pos,Neg) =
∑

x∈Neg

Lconf+∑
x∈Pos

(Lconf + αLloc + βLpt)
(3)

The terms Lconf , Lloc and Lpt denote the classi-
fication loss, 2D bounding boxes fitting loss and
coordinate regression loss, respectively. In terms of
Lpt, we indirectly regress the image coordinates of
3D bounding box vertices via the intermediate 2D
detection results. Specifically, we predict offsets for
the coordinates with respect to the centers of the
regressed 2D bounding boxes, rather than the left-
top corners of the assigned anchor boxes as in [6],
i.e.

δx=
Tx −Bx

Bw
, δy=

Ty −By

Bh
(4)
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Figure 3: The schematic overview of proposed network. We extend 2D detection pipeline to predict the image coordinates of
3D bounding box vertices for each object instance in the image. We construct feature pyramid on top of ResNet-h, which is
specifically designed for pose estimation task by maintaining spatial resolution of low level features.

where T and B denote ground truth coordinates
and the regressed box, respectively. The subscripts
x, y, w, h stand for the box’s center coordinates and
its width and height. The regressed bounding boxes
are likely to be more fitted to the objects than the
assigned anchor boxes, therefore our indirect strat-
egy can reduce the length and variance of regression
targets, leading to stable training and accurate pre-
diction. We employ softmax cross-entropy loss for
classification, whereas smooth L1-norm loss for Lloc

and Lpt.

We adopt a two step training strategy for our
multi-task network. Firstly, we train our network
without the coordinate regression loss in equation 3
to learn to locate the objects. In the second stage,
we fine-tune the model with the full loss. We freeze
the first several convolution layers of the proposed
ResNet-h backbone and fine-tune the network us-
ing stochastic gradient descent with 0.9 momentum,
0.0005 weight decay, and batch size 8. In our exper-
iments, we emphasize the loss term associated with
pose estimation by setting α = 1, β = 10. The ini-
tial learning rate is set to 0.001 for all the sequences
in our experiments. We train our network for 45k
iterations in each stage and divide the learning rate
by 10 at 30k and 40k iterations.

When testing, we simultaneously detect in 2D
and estimate 6D poses by conducting a forward
pass of our network. The network outputs the
object identities with scores, 2D bounding boxes,
and the 2D projections of the object’s 3D control
points. We only select at most 400 top-scoring pre-
dictions after thresholding confidence at 0.01. Non-
maximum suppression with a threshold of 0.45 is
applied to the merged predictions from all levels,
yielding the final detections. We calculate the 6D
pose from the 2D-3D correspondences by solving a
set of equation 2 for each object instance. As in
[5, 6], we utilize an efficient PnP algorithm [12] and
achieve an estimate of the 6D transformation of the
object coordinate frame with respect to the camera
coordinate frame.

4. Experiments

Our method is implemented using MXNet [31]
and ran on an Intel Core i7-6800K@3.40GHz desk-
top with a GeForce 1080Ti GPU. We present and
compare our results with the state-of-the-art pose
estimation methods on the LINEMOD [7] and OC-
CLUSION [8] datasets. LINEMOD is a standard
benchmark for 6D pose estimation algorithms and
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consists of 15 sequences of indoor scenes. In each
frame, one textureless instance in the center is an-
notated with identity, 2D bounding box and 6D
pose. OCCLUSION is an extensively annotated
version of sequence 02 in the LINEMOD dataset
where each image focuses on instances of 8 objects
undergoing heavy occlusions in most cases.

4.1. Evaluation Metrics

We use four standard metrics to evaluate 6D pose
accuracy, including 2D reprojection error, 2D In-
tersection over Union (IoU) score, average distance
of model points (referred to as ADD metric), and
5cm 5◦ metric as in [3, 5, 6].1 The presented re-
sults are the percentage of correctly estimated poses
within certain error thresholds. To measure 2D
pose errors, we project the object’s model vertices
into the image plane using the estimated poses and
the ground truth poses. In terms of reprojection
error, we consider the estimated pose to be correct
when the mean distance between the 2D projections
is less than 5 pixels. This metric is designed for ap-
plications such as augmented reality. In terms of
2D IoU score, we calculate the overlap of the ren-
dered masks’ bounding boxes, and provide results of
correct poses at certain IoU threshold. To measure
pose errors in 3D, the most extensively used error
function is the ADD metric [7], which calculates
the average distance between transformed vertices
of object model M by the ground truth pose P and
the estimated pose P̂.

eADD(P, P̂;M) = avg
x∈M

||Px− P̂x||2 (5)

For symmetric objects with ambiguous poses such
as EggBox and Glue in the LINEMOD dataset,
we use the indistinguishable version of the ADD
metric as in [5, 6]. The threshold is set to 10% of
the object’s diameter.

eADI(P, P̂;M) = avg
x1∈M

min
x2∈M

||Px1−P̂x2||2(6)

We also compare the absolute error of 6D poses
using the 5cm 5◦ metric. With this metric, the
estimated pose is accepted if the translation and
rotation errors are below 5cm and 5◦, respectively.

1We use the public code in
https://github.com/thodan/obj pose eval.

4.2. Ablation Study

In this section, we analyze the effects of backbone
design, regression strategy and input size on pose
estimation. Ablation experiments are conducted on
the LINEMOD dataset, and average results over
the 13 objects (see Sec. 4.3) are presented in Ta-
ble 1. We prove the validity of proposed indirect
regression strategy and maintaining high resolution
of features for improving pose accuracy. A trade-
off between accuracy and speed can be achieved by
changing the input size.

4.2.1. Backbone Design.

We use a 50 layer Residual Network as the base-
line to build our model. [28] and [29] have pointed
out that maintaining high spatial resolution of fea-
tures can improve performance for 2D detection and
semantic segmentation. However, simply adopting
their structures may not be suitable for pose es-
timation task. Following the principle, we propose
ResNet-h backbone design as illustrated in figure 4.
ResNet-h removes the max pooling layer in Stage 1,
and branches off after Stage 3 through Stage 5, with
down-sampling factors of 4, 8 and 16, respectively.
Our structure design reduces the down-sampling
rate of features from the low level of the network,
therefore retains accurate spatial location informa-
tion. For comparison, we also construct two vari-
ants of ResNet, called ResNet-atrous and ResNet-
detnet, according to the structures of [29] and [28].
Both of them utilize atrous convolution operator in
Stage 4 and Stage 5 to keep high spatial resolution
of deeper features. ResNet-detnet uses atrous con-
volution with rate 2 only at the first residual unit of
Stage 4 and Stage 5. Whereas ResNet-atrous uses
atrous convolution with rate 2 in all the residual
units of Stage 4, and rate 4 in Stage 5. The FLOPs
(floating-point operations) of proposed ResNet-h is
about 60.2G at input size 448× 448, while those of
ResNet-atrous and ResNet-detnet are greater than
80G. As reported in Table 1, ResNet-h efficiently
achieves best pose accuracy among the variants
of ResNet and has real-time processing capability.
The results illustrate that maintaining spatial reso-
lution of low level features is more critical than that
of top level features for 6D pose estimation task.

4.2.2. Regression Strategy.

We propose an indirect strategy to regress the im-
age coordinates of 3D vertices based on intermedi-
ate 2D detection results. Our strategy replaces the
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error-prone long range offsets using the more accu-
rate short range offsets, leading to stable training
and robust prediction. To demonstrate the validity
of proposed indirect strategy, we compare with the
direct strategy which regress the image coordinates
with respect to the centers of anchor boxes similar
to [6]. The pose accuracy results are reported in row
1 to 8 of Table 1, and we find that proposed indirect
strategy can boost the performances by about 2%
for all the backbones. This improvement is con-
siderable since we hardly add any computational
overhead.

4.2.3. Input Size.

We present a speed-accuracy trade-off by chang-
ing the input size to 300 × 300 in row 9 to 12 of
Table 1. The FLOPs decrease by about two times,
and our model with ResNet-h backbone can run at
a speed of 53 fps with competitive pose accuracy.
When reducing the resolution of input images, the
performances decline naturally for all the backbone
structures. However, it is worth noting that the
pose accuracy of proposed ResNet-h decreases the
least among the four backbones, since we attempt
to maintain spatial resolution of low level features.
This robustness against spatial down-sampling can
be beneficial for pose estimation of small objects.
Tekin et al. [6] also showed their speed-accuracy
trade-off results for different input sizes. Although
running fast, their best pose accuracy is still much
lower than ours.

4.3. Results on LINEMOD Dataset

On the LINEMOD dataset, we evaluate our
method in terms of single object detection and
6D pose estimation using RGB images only. The
LINEMOD [7] dataset contains 15 sequences of in-
door images in which the central object is anno-
tated with a ground truth pose. Two sequences,
Cup and Bowl, are omitted since the 3D models
are incomplete. We use the same train/test split as
in [5, 6] and augment the training sets as described
in Sec. 3.3. We follow the evaluation protocol of
[5, 6] by measuring accuracy as the percentage of
correctly estimated poses in the test sets. Quan-
titative results of our method in terms of 2D pose
accuracy and 3D pose accuracy are presented. We
also provide qualitative examples of pose prediction
in Figure 5.

4.3.1. 2D Pose Accuracy.

In Table 2, we compare our results with those
of the state-of-the-art methods in terms of 2D re-
projection error. [17] and [5] involve a multi-stage
procedure and require detailed 3D models to refine
the pose predictions. Whereas Tekin et al. [6] and
our network can be trained in end-to-end fashion.
We achieve best accuracy among all the competing
methods even without post-refinement, and outper-
form Tekin et al. [6] by 4%. In Table 3, we perform
a similar comparison in terms of the IoU metric
under threshold 0.5. SSD-6D [3] requires a pose re-
finement, whereas Tekin et al. [6], Deep-6DPose [1]
and ours do not. Our results are better than those
of SSD-6D [3] and Deep-6DPose [1], but a little bit
lower than that of Tekin et al. [6]. Since the pose
accuracy measured by IoU metric under threshold
0.5 is almost perfect, we present our results under
higher thresholds for further comparison. As can be
seen, our approach can yield pose predictions that
are highly overlapping with ground truth for most
of the frames in the test sets.

4.3.2. 3D Pose Accuracy.

In Table 4, we compare with the state-of-the-art
methods in terms of the ADD metric described in
Section 4.1. The results of EggBox and Glue are
measured using the ADI metric as in [5, 6]. We
outperform all the competing methods when used
without pose refinement. Using the 3D CAD mod-
els, BB8 [5] and SSD-6D [3] rely heavily on post
refinement to increase their pose accuracy by ren-
dering and aligning, which is computationally in-
tensive. However, our results are still better than
that of BB8 after refinement by a margin of 9%.
Taking advantage of a large rendered training set,
SSD-6D is able to densely sample the viewpoints
and inplane rotations. In contrast, we only select
about 200 viewpoints sparsely sampled from the up-
per hemisphere for training. In terms of small ob-
jects such as Ape and Duck, our approach has a
significant advantage over Tekin et al. [6], thanks
to the high spatial resolution of features and the
multi-scale architecture. Table 5 presents results
before and after refinement for the competing meth-
ods when the absolute pose error is less than 5cm
and 5◦. Our approach is more stable for different
objects and achieves state-of-the-art pose accuracy
without any post-refinement. The inference speed
of our approach for single object is reported in Ta-
ble 6. Benefited from the fully convolutional ar-
chitecture and no need of refinement, We can per-
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Table 1: Ablation studies about the effects of backbone design, regression strategy and input size on pose estimation accuracy.
We report average percentages of correctly estimated poses on the LINEMOD dataset.

Row
Methods

ADD 5cm 5◦
Reproj.
5px

Inference
Speedreg. strategy backbone

input
shape

1 direct Resnet-50-h 448 70.46 80.35 92.53 25 fps
2 direct Resnet-50-a 448 63.87 77.72 85.18 18 fps
3 direct Resnet-50-d 448 64.80 73.79 85.17 19 fps
4 direct Resnet-50 448 62.80 68.79 81.10 45 fps
5 indirect Resnet-50-h 448 71.70 84.38 94.68 25 fps
6 indirect Resnet-50-a 448 66.97 76.16 88.90 18 fps
7 indirect Resnet-50-d 448 66.38 75.77 89.05 19 fps
8 indirect Resnet-50 448 63.74 71.23 84.74 45 fps
9 indirect Resnet-50-h 300 69.34 82.82 94.29 53 fps
10 indirect Resnet-50-a 300 61.76 70.82 84.07 37 fps
11 indirect Resnet-50-d 300 60.34 69.41 84.92 40 fps
12 indirect Resnet-50 300 54.24 58.18 75.49 87 fps

Table 2: Comparison of our approach with state-of-the-art algorithms on the LINEMOD dataset in terms of 2D reprojection
error. Bold face numbers denote the best overall methods.

Method w/o Refinement w/ Refinement
Object Brachmann [17] BB8 [5] Tekin [6] OURS Brachmann [17] BB8 [5]
Ape - 95.3 92.10 98.01 85.2 96.6
Benchvise - 80.0 95.06 93.56 67.9 90.1
Cam - 80.9 93.24 98.44 58.7 86.0
Can - 84.1 97.44 96.48 70.8 91.2
Cat - 97.0 97.41 98.91 84.2 98.8
Driller - 74.1 79.41 87.21 73.9 80.9
Duck - 81.2 94.65 98.23 73.1 92.2
Eggbox - 87.9 90.33 96.83 83.1 91.0
Glue - 89.0 96.53 95.29 74.2 92.3
Holepuncher - 90.5 92.86 98.20 78.9 95.3
Iron - 78.9 82.94 89.72 83.6 84.8
Lamp - 74.4 76.87 86.17 64.0 75.8
Phone - 77.6 86.07 93.75 60.6 85.3
Average 69.5 83.9 90.37 94.68 73.7 89.3
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Stage 1

with pooling

Stage 2

Stage 3

Stage 4

Stage 5

16x stride

32x stride

8x stride

(a) ResNet-50

Stage 1

no pooling

Stage 2

Stage 3

Stage 4

Stage 5

8x stride

16x stride

4x stride

(b) ResNet-50-h

Stage 1

with pooling

Stage 2

Stage 3

Dilate Rate 2

Dilate Rate 4

8x stride

8x stride

8x stride

(c) ResNet-50-a

Stage 1

with pooling

Stage 2

Stage 3

8x stride

8x stride

8x stride

Dilate Rate 2

Dilate Rate 2

(d) ResNet-50-d
Figure 4: Three variants of ResNet-50 we constructed to maintain spatial resolution of features. ResNet-h removes the max
pooling layer in Stage 1. ResNet-atrous and ResNet-detnet utilize atrous convolution operators in Stage 4 and Stage 5 according
to [29] and [28], respectively. We point out that ResNet-h keeps higher resolution in low level features, whereas ResNet-atrous
and ResNet-detnet focus on deeper features.

Figure 5: Qualitative 6D pose estimation results on the LINEMOD dataset. The green and blue bounding boxes are rendered
using ground truth poses and predicted poses, respectively. As can be seen, our method is robust to scale and light changes.
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Table 3: Comparison of our approach with state-of-the-art algorithms on the LINEMOD dataset in terms of IoU metric.

Threshold 0.5 0.6 0.7 0.8 0.9
Method SSD-6D [3] Tekin [6] Deep-6DPose [1] OURS OURS OURS OURS OURS
Ape - 99.81 99.8 99.91 99.91 99.15 96.88 89.87
Benchvise - 99.90 100 99.81 99.42 99.13 97.88 77.31
Cam - 100 99.7 100 100 99.90 99.32 92.48
Can - 99.81 100 99.80 99.71 99.41 98.24 79.98
Cat - 99.90 99.2 99.90 99.90 99.40 97.52 72.02
Driller - 100 100 99.90 99.41 98.34 93.65 64.55
Duck - 100 99.8 99.72 99.72 99.53 97.67 87.78
Eggbox - 99.91 99.0 99.63 99.53 99.44 98.69 94.22
Glue - 99.81 97.1 98.08 97.79 96.92 93.08 73.17
Holepuncher - 99.90 98.0 100 99.91 99.72 98.39 86.36
Iron - 100 99.7 99.90 99.80 99.50 98.29 81.45
Lamp - 100 99.8 100 99.91 99.62 94.13 59.47
Phone - 100 99.1 98.97 98.69 98.41 96.46 77.43
Average 99.4 99.92 99.3 99.66 99.52 99.11 96.94 79.70

form simultaneous detection and pose estimation
with real-time processing capability.

4.4. Results on OCCLUSION Dataset

To demonstrate robustness with respect to oc-
clusions, we conduct experiments for multi-object
detection and 6D pose estimation on the challeng-
ing OCCLUSION dataset. Unlike in LINEMOD
sequences, the object identities are not known a
priori, which puts forward great difficulty for coor-
dinate regression since the network has to learn var-
ious modalities of different objects. We construct
a synthetic training set of 20,000 images as de-
scribed in Sec. 3.3 using the same objects extracted
from the corresponding sequences in the LINEMOD
dataset, which has become a common protocol as in
[5, 6, 21]. The OCCLUSION dataset is only used
as test set so that the occlusion patterns are not
seen in advance. The network is trained for 112.5k
iterations in total and divide the learning rate by
10 at 75k and 100k iterations. Other training set-
tings are the same as in Sec. 3.3. We report our
pose estimation results in Table 7 and Fig. 6. It
can be seen that our method achieves the best pose
accuracy in terms of 2D reprojection error, which is
the most widely used pose metric on the OCCLU-
SION dataset. Our approach substantially outper-
forms Tekin et al. [6] and PoseCNN [2] when used
with only RGB images, even if PoseCNN involved
semantic labeling supervision for pose estimation.
[21] adopted a sampling and accumulating scheme

to reduce the influence of occlusions at expense of
computational efficiency. They also used a Feature
Mapping (FM) [32] method to bridge the domain
gap between the synthetic training data and the
real-world test images, whereas we do not. For fair-
ness, we compare with their results without FM. As
shown in Table 6 and Table 7, our approach is sev-
eral times faster than PoseCNN [2] and [21] mean-
while achieves competitive pose accuracy. We also
provide our results under 5cm 5◦ and ADD metric
for further comparison. The pose accuracy on Egg-
box is significantly lower than other objects because
more than 70% of close poses are not seen in the
training sequences. In terms of object detection, we
can report a mean Average Precision (mAP) of 0.84
at IoU threshold 0.5 over the 8 objects. Qualitative
results on the OCCLUSION dataset are presented
in Figure 7.

5. Conclusion

In this paper, we have developed a CNN frame-
work to simultaneously detect objects and predict
6D poses for real-time applications using RGB im-
ages only. Following the paradigm of keypoint-
based methods, we establish 2D-3D correspon-
dences by employing CNN to regress the image co-
ordinates of 3D virtual vertices. We propose an in-
direct strategy utilizing intermediate 2D detection
results to improve localization precision. We also
demonstrate that maintaining spatial resolution of
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Table 4: Comparison of our approach with state-of-the-art algorithms on the LINEMOD dataset in terms of ADD metric. Bold
face numbers denote the best overall methods, red numbers denote the best methods among those that do not use refinement,
if different.

Method w/o Refinement w/ Refinement
Object [17] BB8[5] SSD-6D[3] Tekin[6] Deep-6DPose[1] OURS [17] BB8[5] SSD-6D[3]
Ape - 27.9 0 21.62 38.8 41.48 33.2 40.4 65
Bvise - 62.0 0.18 81.80 71.2 85.38 64.8 91.8 80
Cam - 40.1 0.41 36.57 52.5 67.19 38.4 55.7 78
Can - 48.1 1.35 68.80 86.1 80.47 62.9 64.1 86
Cat - 45.2 0.51 41.82 66.2 60.32 42.7 62.6 70
Driller - 58.6 2.58 63.51 82.3 79.79 61.9 74.4 73
Duck - 32.8 0 27.23 32.5 44.78 30.2 44.3 66
Eggbox - 40.0 8.9 69.58 79.4 96.08 49.9 57.8 100
Glue - 27.0 0 80.02 63.7 87.69 31.2 41.2 100
Holep - 42.4 0.30 42.63 56.4 55.59 52.8 67.2 49
Iron - 67.0 8.86 74.97 65.1 81.75 80.0 84.7 78
Lamp - 39.9 8.20 71.11 89.4 86.08 67.0 76.5 73
Phone - 35.2 0.18 47.74 65.0 65.49 38.1 54.0 79
Average 32.3 43.6 2.42 55.95 65.2 71.70 50.2 62.7 79

Table 5: Comparison of our approach with state-of-the-art algorithms on LINEMOD in terms of 5 degrees, 5 cm metric. Bold
face numbers denote the best overall methods.

Method w/o Refinement w/ Refinement
Object OURS Deep-6DPose [1] Brachmann [17] BB8 [5]
Ape 89.11 57.8 34.4 80.2
Benchvise 88.75 72.9 40.6 81.5
Cam 92.09 75.6 30.5 60.0
Can 89.94 70.1 48.4 76.8
Cat 85.81 70.3 34.6 79.9
Driller 80.49 72.9 54.5 69.6
Duck 84.14 67.1 22.0 53.2
Eggbox 89.27 68.4 57.1 81.3
Glue 71.73 64.6 23.6 54.0
Holepuncher 83.05 70.4 47.3 73.1
Iron 76.31 60.7 58.7 61.1
Lamp 84.75 70.9 49.3 67.5
Phone 81.44 69.7 26.8 58.6
Average 84.38 68.5 40.6 69.0

Table 6: Comparison of our approach with state-of-the-art algorithms in terms of inference speed.

Method Overall speed for 1 object Refinement runtime
Brachmann [17] 2 fps 100 ms/object
BB8 [5] 3 fps 21 ms/object
SSD-6D [3] 10 fps 24 ms/object
PoseCNN [2] 2 fps 24 ms/object
Deep-6DPose [1] 10 fps -
Tekin [6] 50 fps -
Heatmap [21] < 4 fps -
OURS 25 fps -
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Figure 6: Comparison with state-of-the-art RGB based methods on the OCCLUSION dataset in terms of 2D reprojection
error. We plot percentages of correctly estimated poses as a function of the pixel threshold.

Table 7: Results on the OCCLUSION dataset. Bold face numbers denote the best overall methods.

metric 5cm 5◦ ADD Reproj. 5px

method [2] ours [2] ours
Heatmap
w/o FM [32]

BB8[5] [2] ours
Tekin et
al. [6]

Heatmap
w/o FM [32]

Ape 2.1 23.9 9.6 10.8 14.2 28.5 34.6 61.3 40.4 64.7
Can 4.1 29.9 45.2 39.1 36.9 1.2 15.1 65.8 57.8 53.0
Cat 0.3 9.5 0.9 11.0 8.82 10.4 9.6 49.5 23.3 47.9
Driller 2.5 11.8 41.4 42.5 46.6 0.0 7.4 35.0 17.4 35.1
Duck 1.8 11.7 19.6 18.7 11.1 6.8 31.8 50.0 18.2 36.1
Eggbox 0.0 0.2 22.0 18.4 22.9 - 1.9 2.6 - 10.3
Glue 0.9 8.1 38.5 32.5 39.7 4.7 13.8 39.1 26.9 44.9
Holep. 1.7 14.1 22.1 18.4 20.3 2.4 23.1 56.6 39.5 52.9
Average 1.7 13.7 24.9 24.0 25.1 7.6 19.46 45.0 31.9 43.1

low level features is critical for 6D pose estimation
task. As an extension of 2D detection pipeline,
proposed network runs fast and can be trained in
end-to-end manner. Our approach is able to ad-
dress textureless objects as well as occlusions be-
tween objects. We have proved the effectiveness of
proposed approach for 6D pose estimation on two
benchmark datasets. Experimental results verify
that our method can achieve state-of-the-art pose
accuracy in terms of both 2D metrics and 3D met-
rics.
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