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Abstract

This paper addresses the problem of instance level 6D pose estimation from a
single RGB image. Our approach simultaneously detects objects and recovers
poses by predicting the 2D image locations of the object’s 3D bounding box
vertices. Specifically, we focus on the challenge of locating virtual keypoints
outside the object region proposals, and propose a boundary-based keypoint
representation which incorporates classification and regression schemes to re-
duce output space. Moreover, our method predicts localization confidences and
alleviates the influence of difficult keypoints by a voting process. We implement
proposed method based on 2D detection pipeline, meanwhile bridge the feature
gap between detection and pose estimation. Our network has real-time pro-
cessing capability, which runs 30 fps on a GTX 1080Ti GPU. For single object
and multiple objects pose estimation on two benchmark datasets, our approach
achieves competitive or superior performance compared with state-of-the-art
RGB based pose estimation methods.

Keywords: 6D pose estimation, keypoint representation, localization
confidence, real-time processing

1. Introduction

6D relative pose estimation between object and camera is a classical problem
in computer vision, but has recently attracted intensive attention. Effective
acquisition of an object’s position and orientation is critical for accomplishing
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various higher level vision tasks such as augmented reality, autonomous driving
and robotics. Although methods [1, 2, 3, 4] using RGB-D data have achieved
high pose accuracy, a large number of researchers are engaged in RGB-based
6D pose estimation for better efficiency and usability. According to the scope
of objects of interest, prevailing pose estimation methods can be classified into
category level methods [5, 6, 7, 8, 9] and instance level methods [10, 11, 12, 13,
14, 15]. The former class concentrates on handling intra-category variation to
coarsely determine relative orientations for an entire category. The later class
aims at achieving high-accuracy pose estimation for several particular objects,
which is what we do in this paper.

Traditional pose estimation methods [16, 17, 18] are typically limited to
objects with rich texture, while recent deep learning based methods [1, 2, 10, 11,
12, 14, 15, 19] have boosted the performance on poorly textured objects. Among
the various strategies proposed to employ convolutional neural networks (CNN)
to estimate 6D poses, one popular way is to establish 2D-3D correspondences by
predicting 2D projection locations of objects’ 3D bounding box corners. This
kind of approaches [10, 12, 13, 15, 19] train neural networks to detect keypoints
instead of depending on hand-crafted features. As an instance level task, pose
estimation used to heavily rely on object regions provided by 2D detectors.
[11, 12, 13] validate that pose estimation can be effectively integrated into 2D
detection frameworks in a multi-task learning manner. Recent state-of-the-art
methods [14, 15] leverage segmentation supervision to locate objects, and yield
pixel-wise dense predictions for pose hypotheses.

Our approach follows the paradigm of keypoint-based methods, and perform
2D detection and pose estimation simultaneously. Specifically, we focus on the
challenge of accurately locating keypoints outside the object region proposals.
Many keypoint-related tasks such as human pose estimation may encounter this
problem due to inaccurate detection results. For purpose of 6D pose estimation,
we need to locate virtual control points instead of appearance feature points,
which are more likely to lie outside the 2D bounding boxes as shown in Fig.1.
Besides, some virtual vertices are naturally more difficult than others. They
are typically occluded or lie on the background, thus lacking discriminative
local features. It is challenging to locate these difficult vertices confidently from
RGB images only, and may consequently hinder the pose accuracy. However,
as far as we know these two issues have hardly been explicitly considered in
keypoint-based pose estimation methods.

To address the above problems, we propose a novel keypoint representation
based on region boundaries and integrate classification and regression schemes.
As illustrated in Fig. 1b, we assign a keypoint to one of four subspaces according
to the distances from the corners, and regress the offsets from the nearest two
boundaries. In contrast to heatmap based representation, our approach can
apply to keypoints both within and outside the region proposals. Compared
with similar keypoint-based methods [12, 13], our proposed representation has
a smaller output space by reducing the length and variance of regression targets,
which is conductive to stable training and achieving robust localization. Our
representation can also predict localization confidences, which are used to refine
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the keypoints during non-maximum suppression (NMS) for pose estimation.
Whereas PVNet [14] acquire confidence scores through RANSAC [20] based
voting scheme, which takes up a dominant portion of the entire runtime. To
implement our method, we develop an end-to-end trainable network extending
2D detection pipeline with elaborate design for pose estimation. We introduce
feature transition module and feature fusion module to bridge the gap between
detection and pose estimation, meanwhile maintain high resolution represen-
tations. Then we extract refined regional features for locating keypoints, and
adopt EPnP algorithm [21] to calculate poses. Since [14] and [15] both perform
class-based segmentation to locate objects, they may have trouble handling
multi-instance clustered scenes. In contrast, we use less supervision and achieve
comparable pose accuracy. Our approach offers an inference speed of about 30
fps on a GTX 1080Ti GPU, which is faster than [14] and [15].

We conduct comprehensive experiments on LINEMOD dataset [22] and OC-
CLUSION dataset [23]. The results verify that our approach achieves the best
pose accuracy among the compared methods that do not use segmentation su-
pervision, and even competes with state-of-the-art methods [14, 15].

In summary, the main contributions of our work are three-fold:

• We propose a novel region boundary based keypoint representation for
locating 3D vertices in the context of 6D pose estimation, which reduces
output space by integrating classification and regression schemes. The
proposed representation not only applies to out-of-region keypoints but
also predicts localization confidences.

• We develop an efficient two-stage detection-driven architecture for 6D pose
estimation, which introduces feature transition and fusion module to close
the gap between 2D detection and pose estimation.

• Our approach outperforms the compared detection-driven RGB based 6D
pose estimation methods on two common benchmarks, and competes with
SOTA segmentation-driven methods [14, 15].

The rest of this paper is organized as follows. We review related works in
Section 2, and then detail each component of our method in Section 3. We
present ablation experiments and comparison with the state-of-the-art methods
in Section 4. Finally conclusions are summarized in Section 5.

2. Related Work

The vast majority of instance level 6D pose estimation methods assume cal-
ibrated cameras and available 3D models. The main difference in the input
data is whether or not depth data is included. It has been validated that depth
information is critical for both pose estimation and pose refinement. However,
acquiring depth data by active sensors consumes extensive energy, and the depth
data may need complex post-processing such as filling holes. Despite the leading
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(a) Tekin et al. [12] (b) Proposed boundary-based rep-
resentation

Figure 1: Illustration of proposed boundary-based representation for out-of-region keypoints.
The yellow rectangles represent anchor boxes in 2D detectors. The green rectangle represents
detection result. The gray cuboids are 3D bounding boxes of an object. In (a), Tekin et
al. [12] regress all the image coordinates of 3D bounding box vertices w.r.t. the anchor box
center. Whereas we adopt a two-step procedure to locate keypoints based on refined regional
features, and propose a boundary-based keypoint representation to significantly reduce output
space.

pose accuracy, depth-based methods [22, 23, 2, 3, 4] usually have large compu-
tational cost due to sampling and voting schemes. Therefore, in this work we
mainly focus on RGB based 6D pose estimation methods for better efficiency
and usability.

2.1. RGB-based 6D pose estimation.

The studies of 6D pose estimation originated from the Perspective-n-Point
(PnP) solutions [21, 24], which calculate relative transformations given some
pairs of 2D-3D correspondence. Traditional pose estimation approaches can
be categorized into keypoint-based methods and appearance-based methods.
Keypoint-based methods [16, 17, 18] rely on hand-crafted features to estab-
lish 2D-3D correspondences, and then use a PnP algorithm to calculate 6D
poses. Despite the high precision, they are slow and unable to tackle tex-
tureless objects. Appearance-based methods mainly adopt template match-
ing techniques [25, 26, 27] to directly estimate poses. Methods of this kind
are typically sensitive to partial occlusion and appearance variation. Recent
works [12, 28, 29, 10, 11, 19, 30, 14, 15] mostly utilize convolutional neural
network (CNN) to boost the performance of 6D pose estimation. Commonly
used pose representations in CNN-based approaches include continuous pose
parameters, discretized viewpoints, and semantic or virtual keypoints. For ex-
ample, PoseCNN [29] is designed to detect and segment objects in input images,
meanwhile regress convolutional features of the objects to 6D pose parameters.
SSD-6D [11] discretizes the pose space in the form of viewpoint and in-plane
rotation, and then extends SSD [31] with a pose classification branch. These
two pose representations attempt to estimate poses in a single shot, and usu-
ally need post-refinement to improve pose accuracy. Modern keypoint-based
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methods [10, 12, 19, 14, 15] learn to predict 2D-3D correspondences between
RGB images and 3D models. In terms of keypoint selection, the 3D bounding
box corners of the object are most commonly used since they do not require
a detailed 3D model. With the help of deep learning, these approaches are
able to establish 2D-3D correspondences under challenging conditions where
hand-crafted features fail, followed by a PnP solution to achieve accurate pose
estimation on multiple 6D pose benchmark datasets.

2.2. Keypoint Localization

One popular application of keypoint localization is human pose estimation.
In terms of keypoint representation, heatmap is widely used by many state-of-
the-art human pose estimation approaches. For 6D pose estimation, [7] employ
stacked hourglass network [32] to predict heatmaps for semantic keypoints. Al-
though the success in locating appearance keypoints, heatmap representation
has trouble in handling keypoints outside the object regions, and a common
practice during training is to ignore these keypoints directly. However, this
strategy is invalid for keypoint-based 6D pose estimation, since 3D bounding
box corners are usually outside the object region proposals. In order to break
this constrain, [19] samples numerous image patches in a sliding window fash-
ion, and then aggregates all the heatmaps to predict virtual keypoints. More
efficiently, [33] applies an extended region mapping approach to enable out-of-
view feature point prediction. In addition to heatmap representation, [14] and
[15] both predict pixel-wise directions to the keypoints based on segmentation
frameworks. Tekin et al. [12] regress offsets of keypoints with respect to the
anchor box centers of a single-shot detector. Since they predict on a low res-
olution feature map (13 × 13), the anchor boxes are usually not well fitted to
the objects, thus leading to a large output space of coordinate regression. In
contrast, we regress offsets with respect to the closest boundaries by integrating
classification and regression schemes to reduce the output space.

2.3. 2D Object Detection

CNN-based object detection methods are commonly categorized into single-
shot detectors and two-stage detectors. Single-shot detectors are tuned for speed
to directly make predictions for densely-sampled anchor boxes in fully convo-
lutional forms. Whereas two-stage detectors adopt resampling (e.g. ROI-Align
[34]) to extract refined regional features of proposals for better accuracy. 6D
pose estimation methods used to perform on image patches located by off-the-
shelf 2D detectors. Currently the trend is to achieve pose estimation within the
detection pipeline by integrating multi-task supervision. To name a few, Tekin
et al. [12] and SSD-6D [11] extend single-shot detectors, while PoseCNN [29]
selects two-stage detectors. Several works [10, 29, 14, 15] also involve segmen-
tation supervision to better detect objects and predict poses. In this work, we
combine the advantages of both classes. We first utilize a single-shot detector to
classify and locate objects in real time, then feed the detection results into pose
module as proposals. In pose module we extract regional features for keypoint
localization using proposed representation.
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3. Approach

Given an input image, our approach aims to detect all objects of inter-
est and estimate their 6D poses. Motivated by [12], we extend 2D detection
pipeline to predict 3D bounding box corners of each object instance in the im-
age. Then we can calculate 6D poses with an efficient PnP algorithm [21] given
these 2D-3D correspondences. The schematic overview of proposed network is
shown in Fig. 2. Firstly, the input RGB image is resized to 512 × 512 and fed
into a single shot 2D detector. We introduce transition and fusion module to
bridge feature gap and maintain high spatial resolution. Secondly, we extract
refined regional features to locate virtual keypoints and estimate localization
confidences using proposed boundary-based keypoint representation. Finally,
we integrate confidence-based voting strategy into non-maximum suppression
to refine keypoint locations. We now describe each part of our approach in
more detail.

3.1. Keypoint Representation

In order to locate out-of-region keypoints, we propose a boundary-based
representation by integrating classification and regression schemes. Given a
keypoint, we first determine the two perpendicular boundaries that are closest
to it, which is equivalent to finding the nearest corner of the region proposal.
We achieve this goal by classifying a keypoint into one of four subspaces divided
by symmetry axes as shown in Fig. 1b. And then we regress the coordinate
offsets of the keypoints with reference to the assigned corners. For subspace
classification, we assign ground truth labels from a probabilistic perspective.
Instead of one-hot labels, we calculate classification probabilities as follows:

pi =
edi

4∑
j=1

edj

, i = 1, 2, 3, 4 (1)

where di indicates the distance between a keypoint and one of four corners.
In this way we attempt to encode keypoint distribution information into the
labels. For example, the classification score of a keypoint close to a symme-
try axis should be remarkably lower than those of keypoints near the corners.
Meanwhile, keypoints close to symmetry axes are empirically considered to be
difficult for subspace classification. Therefore, with this distribution prior, we
are able to exploit hard examples. We adopt a re-weighted cross entropy loss
during training:

Lcls = −α
N∑
i=1

[(1−max pi)

4∑
j=1

pij log p̂ij ] (2)

where p̂ij is predicted probability, N is the number of keypoints in a mini-batch.
α is a normalization factor which is calculated online:
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α =
N

N∑
i=1

(1−max pi)

(3)

For coordinate offsets, the regression targets are calculated as follows:

tx =
gtx − bx
width

, ty =
gty − by
height

(4)

where bx and by indicate coordinates of selected boundaries. width and height
are from the region proposal. We employ smooth KL divergence loss [35] for
coordinate regression along with confidence prediction.

Lreg&conf =

{
e−var

2 (targetreg − predreg)2 + var
2 , |targetreg − predreg| ≤ 1

e−var(|targetreg − predreg| − 1
2 ) + var

2 , |targetreg − predreg| > 1
(5)

KL loss formulates predicted coordinates as Gaussian distribution, and var
represents the learned variances. Ideally, a highly confident prediction should
have low variance. Therefore, we calculate localization confidence as follows:

conf = e−var (6)

Instead of Online Hard Keypoints Mining (OHKM) [36], we adopt Online Hard
Coordinates Mining (OHCM) based on the observation that errors of x and y
coordinates are usually irrelevant. We process each coordinate separately, and
only punish the top K coordinate losses out of 8×2 in our implementation. The
overall loss function for pose estimation consists of the above two parts:

Lpose = Lcls + Lreg&conf (7)

3.2. Network Architecture

For object detection, we generally follow a SSD-style [31] structure. The
input RGB image is resized to 512× 512 and fed into the backbone network, a
FPN-ResNet [37] architecture. Top-down and lateral connections are attached
after ResNet Stage 2 through Stage 5 to extract multi-scale features for detec-
tion. P6 is down-sampled from Stage 5 output by a 3× 3 stride-2 max pooling
layer only to cover large objects. The dimensions of the feature map at scale s
is denoted by (ws, hs, cs), where cs is set to 256 for all feature levels P2 through
P6. We create 4 anchor boxes at each location of the feature maps at three
aspect ratios {1 : 2, 1 : 1, 2 : 1}, with sizes of 252 to 2562 on pyramid levels P2
to P6, respectively. All the feature maps are convolved with a set of 3× 3× cs
kernels that share parameters across levels to jointly classify the objects and
refine the 2D bounding boxes. The output of detection module at scale s is a
3D tensor of size (ws, hs, 4× (4+C+1)), where C denotes the number of object
classes excluding the background. Then we merge predictions from all levels
and feed the detection results into pose module as region proposals.
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Figure 2: The schematic overview of proposed network. We extend 2D detection pipeline to
predict the image coordinates of 3D bounding box vertices for each object instance in the
image. In pose module, we introduce feature transition module and fusion module to bridge
the gap between detection and pose estimation.

We introduce feature transition module and fusion module to bridge the gap
between detection and pose estimation. We argue that pose estimation focuses
on appearance variations from different perspectives, whereas object detection
aims to achieve invariance against these changes. Therefore, features for detec-
tion may not well suited for pose estimation. We illustrate the transition module
and fusion module in Fig. 3. Some structure design ideas are inspired by hu-
man pose estimation methods [36, 38]. In transition module, we stack more
bottleneck residual units into deeper features to compensate for the lack of spa-
tial information. Each residual unit keeps the input and output dimensions the
same. In fusion module, each level of features incorporates features from other
levels. We adopt consecutive stride-2 3× 3 convolution for down-sampling, and
nearest neighbour interpolation for up-sampling. Then the down-sampled and
up-sampled feature maps are element-wise added to the origin feature map. Fi-
nally, we concatenate all the fused layers and attach a residual unit to achieve
features for pose estimation with 256 channels and stride of 4 w.r.t. input image.

We adopt ROI-Align to extract regional features for pose estimation accord-
ing to detection results. Each feature vector is fed into two consecutive 1024-way
fully connected layers followed by three output branches. The first one has 8×4
output neurons, where each set of 4 neurons produces softmax probability es-
timates for subspace classification of a keypoint. The second and third branch
has 8×4×2 output neurons. They encodes positions and variances for keypoint
coordinates in a subspace-specific manner, respectively.

3.3. Training Procedure

Inspired by [39], we construct synthetic training sets with two complemen-
tary strategies to handle the problem of insufficient annotated real-world data.
Firstly, we use 3D models to render images for each object with uniformly sam-
pled poses and scales. Secondly, we employ the ”cut and paste” strategy used
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Figure 3: The structure of feature transition module and feature fusion module.

in [12, 10]. The segmented target objects are scaled by a factor of s ∈ [0.8, 1.2]
and randomly placed onto the background. For both strategies the background
images are selected from MS COCO dataset [40]. The combined synthetic train-
ing set can densely cover 6D pose space while focusing on real-world appearance
of the objects. In order to introduce more occlusion patterns, we put multiple
object instances into each training image. we also apply random cropping and
color jittering during training.

For object detection, positive and negative anchor boxes are decided by the
overlaps with ground truth 2D bounding boxes. An anchor box is considered
to be positive if it has IoU with a ground-truth bounding box of at least 0.5
and negative otherwise. We select hard negatives anchor boxes so that the
positives-negatives ratio is 1:3, to achieve fast convergence and stable training.
The detection loss Ldet is identical as the MultiBox loss in SSD [31]. During
training, we select 2000 top-scoring proposals per image from merged multi-
scale detection results, followed by non-maximum suppression with a threshold
of 0.7. The pose loss Lpose is defined only on positive proposals which has IoU
with a ground-truth bounding box of at least 0.5. We select at most 256 positive
proposals per image. We minimize the overall multi-task loss function:

L = Ldet + βLpose (8)

The weight term β is set to 10 in our implementation. With pretrained ResNet-
50 backbone, we train the network using stochastic gradient descent with 0.9
momentum, 0.0005 weight decay, and batch size 8. The initial learning rate is
set to 0.001 and divided by 10 at 60k and 80k iterations. All models in our
experiments are trained for 90k iterations.

3.4. Inference

When testing, we simultaneously detect objects and estimate 6D poses for all
instances by conducting a forward pass of our network. The detection module
outputs object identities with scores and 2D bounding boxes. We only select at
most 100 top-scoring predictions per image after thresholding score at 0.01. The
pose module takes these proposals as input, and yield keypoint positions along
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with confidences. Motivated by [35], we vote the location of selected keypoints
using neighboring instances according to learned confidences within the loop of
NMS.

Algorithm 1 Confidence Voting Keypoint NMS

K is N × 16 matrix of initial keypoint positions. C is N × 16 matrix
of corresponding confidences. S is corresponding pose scores. N repre-
sents the number of proposals. D is the final set of refined keypoints,
and E is the final set of refined confidences. Nt is the NMS thresh-
old.

K = {k1, ..., kN}, S = {s1, ..., sN}, C = {c1, ..., cN}
D ← {}, E ← {}
while K 6= empty do
m← arg maxS
idx← kpt IoU(km,K) > Nt

K ← K −K[idx], S ← S − S[idx]
p← exp(−(1− kpt IoU(km,K[idx]))2/σt)

km ←
∑

i∈idx
piciki

/ ∑
i∈idx

pici

cm ←
∑

i∈idx
pici

/ ∑
i∈idx

pi

D ← D ∪ km, E ← E ∪ cm
end while
return D,E

Similar to [36], we use rescoring strategy in Algorithm 1 to calculated pose
scores:

si =
det scorei

8

8∑
j=1

subspace scorej min(confjx, confjy), i = 1, ..., N (9)

where the product of detection score and the average score of all keypoints
weighted by confidences is considered as pose score of an object instance. The
kpt IoU is adapted from Object Keypoint Similarity (OKS):

kpt IoU(k1, k2) =
1

8

8∑
i=1

exp{− (k1ix − k2ix)
2

+ (k1iy − k2iy)
2

(w1h1 + w2h2)/2
} (10)

We find our method is robust to the tunable parameter σt, which is set to 0.001
in our experiments. As in [12, 19], we employ efficient PnP algorithm [21] to
achieve an estimate of the 6D transformation of the object coordinate frame
with respect to the camera coordinate frame.

4. Experiments

Our method is implemented using MXNet [41] and ran on an Intel Core i7-
6800K@3.40GHz desktop with a GeForce 1080Ti GPU. We present our results

10



on the LINEMOD [22] and OCCLUSION [23] datasets and compare with the
state-of-the-art pose estimation methods. LINEMOD dataset consists of 15
sequences of indoor scenes, in which one textureless central object is annotated
with identity, 2D bounding box and 6D pose. OCCLUSION is an additionally
annotated version of a sequence in the LINEMOD dataset where each frame
contains multiple heavily occluded objects in most cases.

4.1. Evaluation Metrics

We use three common metrics to evaluate 6D pose accuracy, including re-
projection error, 5cm 5◦ metric, and average distance of model points (referred
to as ADD metric) as in [12, 11, 10].1 We report results as the percentage of
correctly estimated poses within certain error thresholds. Reprojection error
measures pose accuracy in 2D. We project the object’s model vertices into the
image plane using the estimated poses and the ground truth poses. Estimated
pose is considered to be correct when the mean distance between the 2D pro-
jections is less than 5 pixels. This metric is suitable for applications such as
augmented reality. To measure pose errors in 3D, ADD metric [22] calculates
average distance between transformed vertices of object model M by ground
truth pose P and estimated pose P̂.

eADD(P, P̂;M) = avg
x∈M

||Px− P̂x||2 (11)

For symmetric objects with ambiguous poses such as EggBox and Glue in the
LINEMOD dataset, the indistinguishable version of the ADD metric is used as
in [12, 10]. The threshold is set to 10% of the object’s diameter.

eADI(P, P̂;M) = avg
x1∈M

min
x2∈M

||Px1 − P̂x2||2 (12)

We also compare the absolute error of 6D poses using the 5cm 5◦ metric. With
this metric, the estimated pose is accepted if the translation and rotation errors
are below 5cm and 5◦, respectively.

4.2. Ablation Study

In this subsection, we analyse the contribution of proposed keypoint repre-
sentation, network architecture and confidence-voting keypoint NMS to 6D pose
estimation accuracy. Ablation experiments are conducted on the OCCLUSION
dataset, and average results over 8 objects (see Sec. 4.3.2) are presented.

4.2.1. Keypoint Representation.

We first investigate the effect of subspace classification targets. We use one-
hot labels and standard cross entropy loss as baseline. The result is listed in
the row ”hard-cls” in Table 1. Simply using probabilistic labels calculated by

1We use the public code in https://github.com/thodan/obj pose eval.
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Table 1: Ablation studies about subspace classification.

cls strategy ADD 5cm 5◦ Reproj. 5px
reweighted soft-cls 29.9 27.5 61.2
soft-cls 28.1 25.7 60.1
hard-cls 27.2 25.6 59.8

Table 2: Ablation studies about offset regression using Online Hard Coordinate Mining
(OHCM).

topK ADD 5cm 5◦ Reproj. 5px
4 31.2 31.0 62.5
8 30.6 29.4 62.4
12 29.9 27.8 61.4
16 29.9 27.5 61.2

equation 1 provides slight improvement. Combined with proposed reweighted
cross entropy loss in equation 2, we can increase ADD metric by 2.7 points
over the baseline. We add this empirical hard sample mining strategy after 45k
iterations during training.

Our next attempt to improve learning involves using Online Hard Coordinate
Mining (OHCM) strategy. We process each coordinate independently, whereas
OHKM [36] cannot since they use heatmap representation. We select hard
coordinates according to absolute error of offset regression instead of the whole
KL loss, whose value can be greatly affected by variance prediction as shown in
equation 5. We add OHCM strategy after 45k iterations during training. For
each proposal, only the top K coordinate losses out of 16 are punished, and the
influence of K is shown in Table 2. Setting K = 4 gives a gain of 1.3 points in
ADD metric.

We compare proposed boundary-based keypoint representation with heatmap
in Table 3. We adapt our network for heatmap representation by replacing the
pose ROI head with the mask branch for keypoint localization in Mask R-CNN
[34]. The mask branch is trained to locate 8 bounding box corners for each
object instance. Out-of-region keypoints are directly ignored during training.
As expected, the performance of plain heatmap representation are limited due
to the missing of massive supervision information. Using the same network
structure, the extended heatmapping approach [33] re-defines the representa-
tion area of output heatmap to utilize out-of-region keypoint training samples,
thus improves pose results. Nonetheless, proposed boundary-based keypoint
representation still significantly outperforms it by 11.2 points in ADD metric.

4.2.2. Network Architecture.

We validate the importance of feature transition module and feature fusion
module in Table 4. The ablative studies are conducted by removing the mod-
ules from our network pipeline. The plain structure without transition and
fusion modules directly extract regional features for pose estimation from de-
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Table 3: Comparison of proposed boundary-based keypoint representation with heatmap rep-
resentation.

Method ADD 5cm 5◦ Reproj. 5px
heatmap 5.6 10.4 17.9
extended heatmapping 20.0 23.4 52.4
proposed 31.2 31.0 62.5

Table 4: Ablation studies about feature transition module and feature fusion module.
transition fusion ADD 5cm 5◦ Reproj. 5px speed

28.1 26.1 59.2 35 fps
X 29.9 27.8 60.9 32 fps

X 29.5 27.9 60.5 34 fps
X X 31.2 31.0 62.5 30 fps

tection features. We can observe performance degradation in all three ablative
experiments, thus proving the validity of both modules. The combined transi-
tion module and fusion module can improve 3.1 points in ADD metric, while
bringing in little computational cost.

4.2.3. Confidence Voting Keypoint NMS.

As shown in Table 5, we compare the performance of different NMS strategies
and proposed confidence-voting keypoint NMS under various thresholds. The
first row presents pose results using standard bounding box NMS. Keypoint
NMS adds rescoring strategy (equation 9) and uses keypoint IoU (eqaution
10). These two NMS strategies do not change keypoint positions of top-scoring
proposals. Whereas proposed confidence-voting keypoint NMS refines keypoint
positions of top-scoring proposals according to localization confidences. Raising
the NMS threshold can filter out inaccurate predictions in confidence voting, but
it may also increase false positive detections. We set confidence voting keypoint
NMS threshold to 0.55 to balance the impact of these two aspects.

4.3. Comparison with the State-of-the-art Methods

We evaluate the performance of our algorithm on simultaneous detection and
pose estimation for a single object and multiple objects. Comparison with the

Table 5: Comparison between different NMS strategies.

Method Threshold ADD 5cm 5◦ Reproj. 5px
bounding box nms 0.45 31.2 31.0 62.5
keypoint nms 0.45 31.3 31.3 62.7

conf-voting kpt nms

0.45 31.6 31.5 62.9
0.55 31.8 31.6 63.2
0.65 31.7 31.5 63.0
0.75 31.4 31.4 63.0
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Figure 4: We present qualitative 6D pose estimation results on the LINEMOD dataset. The
green and blue 3D bounding boxes are rendered using ground truth poses and predicted poses,
respectively.

state-of-the-art RGB based pose estimation methods in terms of various pose
metrics is performed on the LINEMOD and OCCLUSION dataset.

4.3.1. Results on the LINEMOD Dataset

The LINEMOD [22] dataset contains 15 sequences of indoor images, among
which two sequences, Cup and Bowl, are commonly ignored since the 3D models
are incomplete. In each image, only a central object is annotated with ground
truth pose. We use the same train/test split as in [12, 10] and augment the
training sets as described in Sec. 3.3. We report quantitative results of our
method in terms of 2D reprojection metric and ADD(-I) metric. Qualitative
examples of pose predictions are also presented in Figure 4.

In Table 6, we compare our results with those of the state-of-the-art meth-
ods under 2D reprojection metric. Detection-driven methods only utilize 2D
bounding box and pose annotation, whereas segmentation-driven methods in-
volve additional segmentation supervision. Different from Tekin et al. [12] and
Zhang et al. [13], we propose a novel representation to locate keypoints based
on detected proposals meanwhile estimate confidences. As can be seen, our
approach achieves best accuracy among the compared detection-driven meth-
ods. BB8 [10] relies on post-refinement to boost its pose accuracy, but we still
outperform it by 7.3%. Our results even competes with recent state-of-the-art
method, PVNet [14], which generate keypoint hypotheses by RANSAC-based
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Table 6: Comparison of our approach with state-of-the-art algorithms on the LINEMOD
dataset in terms of 2D reprojection metric. We report percentages of correctly estimated
poses. Bold face numbers denote the best overall methods, and blue numbers denote the
best detection-driven methods.

Method Detection-driven Segmentation-driven
Object Tekin [12] Zhang [13] OURS BB8 [10] w/ ref. PVNet [14]
Ape 92.10 98.0 98.8 96.6 99.23
Benchvise 95.06 93.6 94.6 90.1 99.81
Cam 93.24 98.4 98.1 86.0 99.21
Can 97.44 96.5 97.3 91.2 99.90
Cat 97.41 98.9 99.2 98.8 99.30
Driller 79.41 87.2 91.9 80.9 96.92
Duck 94.65 98.2 98.2 92.2 98.02
Eggbox 90.33 96.8 97.9 91.0 99.34
Glue 96.53 95.3 97.3 92.3 98.45
Holepuncher 92.86 98.2 99.0 95.3 100.0
Iron 82.94 89.7 92.7 84.8 99.18
Lamp 76.87 86.2 94.1 75.8 98.27
Phone 86.07 93.8 96.3 85.3 99.42
Average 90.37 94.7 96.6 89.3 99.00

voting.
In Table 7, we report pose accuracy in terms of the ADD(-I) metric de-

scribed in Section 4.1. EggBox and Glue are considered as symmetric objects,
and the corresponding results are measured using the ADI metric as suggested
in [12, 10]. We have achieved substantial improvement compared with Tekin
[12] and Zhang [13], thanks to proposed keypoint representation and network
architecture. Taking advantage of detailed 3D CAD models, BB8 [10] and SSD-
6D [11] significantly boost their pose accuracy by rendering and aligning, which
are computationally intensive. However, our results are still better than SSD-
6D after refinement by 3.4%. Our results are second only to PVNet [14] which
uses segmentation supervision.

The inference speed of our approach for single object is reported in Table
8. With no need of refinement, We can perform simultaneous detection and
pose estimation with real-time processing capability. To process a 480 × 640
image, our implementation takes 10 ms for data loading, 16.8 ms for network
forward propagation, 3.4 ms for confidence voting keypoint NMS, and 0.1 ms
for PnP calculation. Our approach strikes a good balance between speed and
pose accuracy.

4.3.2. Results on the OCCLUSION Dataset

In this section, we compare with state-of-the-art methods for multi-object
detection and 6D pose estimation on the challenging OCCLUSION dataset. As
described in Sec. 3.3, we construct a synthetic training set of 20,000 images
by rendering and extracting object patches from corresponding sequences in
the LINEMOD dataset. We only use the OCCLUSION dataset as test set to
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Table 7: Comparison of our approach with state-of-the-art algorithms on the LINEMOD
dataset in terms of ADD(-I) metric. We report percentages of correctly estimated poses.
Bold face numbers denote the best overall methods, and blue numbers denote the best
detection-driven methods.

Method Detection-driven Segmentation-driven
Object SSD-6D[11] w/ ref. Tekin[12] Zhang [13] OURS BB8[10] w/ ref. PVNet[14]
Ape 65 21.62 41.48 55.8 40.4 43.62
Bvise 80 81.80 85.38 92.8 91.8 99.90
Cam 78 36.57 67.19 82.1 55.7 86.86
Can 86 68.80 80.47 89.5 64.1 95.47
Cat 70 41.82 60.32 72.3 62.6 79.34
Driller 73 63.51 79.79 91.0 74.4 96.43
Duck 66 27.23 44.78 61.3 44.3 52.58
Eggbox 100 69.58 96.08 96.8 57.8 99.15
Glue 100 80.02 87.69 92.0 41.2 95.66
Holep 49 42.63 55.59 72.4 67.2 81.92
Iron 78 74.97 81.75 87.9 84.7 98.88
Lamp 73 71.11 86.08 93.4 76.5 99.33
Phone 79 47.74 65.49 84.5 54.0 92.41
Average 79 55.95 71.70 82.4 62.7 86.27

Table 8: Comparison of our approach with state-of-the-art algorithms in terms of inference
speed.

Method Overall speed for 1 object Refinement runtime
BB8 [10] 4 fps (Titan X) 21 ms/object
SSD-6D [11] 10 fps (GTX 1080) 24 ms/object
PoseCNN [29] 2 fps (GTX 1080) 24 ms/object
Tekin [12] 50 fps (Titan X) -
Zhang [13] 25 fps (GTX 1080Ti) -
DeepHMap [19] < 4 fps (GTX 980Ti) -
PVNet [14] 25 fps (GTX 1080Ti) -
[15] 22 fps (Modern GPU) -
OURS 33.0 fps (GTX 1080Ti) -
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Table 9: Results on the OCCLUSION dataset. We report percentages of correctly estimated
poses. Bold face numbers denote the best overall methods.

metric ADD(-I) Reproj. 5px

method [15] PVNet [14]
DeepHMap
w/ FM [19]

ours [15]
Tekin
[12]

PVNet [14]
DeepHMap
w/ FM [19]

ours

Ape 12.1 6.50 17.6 14.3 59.1 7.0 69.14 69.6 68.0
Can 39.9 65.04 53.9 59.7 59.8 11.2 86.09 82.6 88.4
Cat 8.2 15.00 3.3 19.7 46.9 3.6 65.12 65.1 64.2
Driller 45.2 55.60 62.4 49.3 59.0 5.1 73.06 73.8 69.5
Duck 17.2 15.95 19.2 28.6 42.6 1.4 61.44 61.4 75.7
Eggbox 22.1 35.23 25.9 17.9 11.9 - 8.43 13.1 8.9
Glue 35.8 42.64 39.6 44.2 16.5 4.7 55.37 54.9 54.9
Holep. 36.0 35.06 21.3 20.8 63.6 8.3 69.84 66.4 75.9
Average 27.0 33.88 30.4 31.8 44.9 6.2 61.06 60.9 63.2

avoid seeing the occlusion patterns in advance. Other training settings are the
same as in Sec. 3.3. Pose estimation results are presented in Table 9. As
can be seen, we achieve the best pose accuracy in terms of 2D reprojection
metric and outperform PVNet [14] by 2.1 points. Compared with Tekin et al.
[12], our method is significantly more robust to partial occlusions since proposed
keypoint representation explicitly measures localization confidences. At expense
of great computational cost, [19] utilizes a sampling and accumulating scheme to
handle occlusions. They also introduce Feature Mapping (FM) [42] procedure
to boost pose accuracy by bridging the domain gap between synthetic training
data and real-world test images. Whereas we seek to achieve the same goal
by elaborately constructing training set. Our approach is much more efficient
than [19], meanwhile achieves better pose accuracy as shown in Table 8 and
Table 9. Note that PVNet [14] elaborately select surface keypoints instead of
the 3D bounding box corners. For a fair comparison, we present the results of
all methods including PVNet using the 3D bounding box corners as keypoints.
In terms of object detection, our method achieves a mean Average Precision
(mAP) of 0.80 at IoU threshold 0.5 over the 8 objects. We present qualitative
results on the OCCLUSION dataset in Figure 5.

On the OCCLUSION dataset, our implementation takes 10 ms for data
loading, 19.5 ms for network forward propagation, 3.6 ms for confidence voting
keypoint NMS, and about 1 ms for PnP calculation. Our approach runs at 30
fps for multi-object pose estimation.

5. Conclusion

In summary, we have developed an effective CNN framework for RGB based
6D pose estimation by locating 3D bounding box vertices. For that goal, we
propose a boundary-based keypoint representation to better locate out-of-region
keypoints. Proposed representation also estimates localization confidences to

17



Figure 5: We present qualitative 6D pose estimation results on the OCCLUSION dataset. In
left column we only draw the 3D bounding boxes rendered by predicted poses. In right column
we render the green and blue 3D bounding boxes using ground truth poses and predicted poses,
respectively.

alleviate the influence of diffcult keypoints by confidence voting keypoint NMS.
As an extension of 2D detection pipeline, proposed network runs fast and can be
trained in end-to-end manner. Our approach applies to textureless objects and is
robust to partial occlusions. Experimental results on two common benchmarks
validate that proposed detection-driven method achieves state-of-the-art pose
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accuracy.

Acknowledgments

This work was supported in part by the National Natural Science Foun-
dation of China (Grant Nos. 61501009 and 61771031), the National Key Re-
search and Development Program of China (Grant Nos. 2016YFB0501300 and
2016YFB0501302), and the Fundamental Research Funds for the Central Uni-
versities.

References

[1] C. Wang, D. Xu, Y. Zhu, R. Martin-Martin, C. Lu, L. Fei-Fei, S. Savarese,
Densefusion: 6d object pose estimation by iterative dense fusion, in: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[2] W. Kehl, F. Milletari, F. Tombari, S. Ilic, N. Navab, Deep learning of local
rgb-d patches for 3dobject detection and 6d pose estimation, in: B. Leibe,
J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision – ECCV 2016,
Springer International Publishing, Cham, 2016, pp. 205–220.

[3] S. Hinterstoisser, V. Lepetit, N. Rajkumar, K. Konolige, Going further
with point pair features, in: European Conference on Computer Vision,
Springer, 2016, pp. 834–848.

[4] J. Vidal, C.-Y. Lin, R. Mart́ı, 6d pose estimation using an improved method
based on point pair features, in: 2018 4th International Conference on
Control, Automation and Robotics (ICCAR), IEEE, 2018, pp. 405–409.

[5] H. Su, C. R. Qi, Y. Li, L. J. Guibas, Render for CNN: Viewpoint estimation
in images using cnns trained with rendered 3d model views, in: 2015 IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2686–
2694. doi:10.1109/ICCV.2015.308.

[6] S. Tulsiani, J. Malik, Viewpoints and keypoints, in: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1510–
1519. doi:10.1109/CVPR.2015.7298758.

[7] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, K. Daniilidis, 6-dof object
pose from semantic keypoints, in: 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 2011–2018. doi:10.1109/

ICRA.2017.7989233.

[8] Y. Kao, W. Li, Z. Wang, D. Zou, R. He, Q. Wang, M. Ahn, S. Hong,
et al., An appearance-and-structure fusion network for object viewpoint
estimation., in: IJCAI, 2018, pp. 4929–4935.

19

http://dx.doi.org/10.1109/ICCV.2015.308
http://dx.doi.org/10.1109/CVPR.2015.7298758
http://dx.doi.org/10.1109/ICRA.2017.7989233
http://dx.doi.org/10.1109/ICRA.2017.7989233


[9] Z. Wang, W. Li, Y. Kao, D. Zou, Q. Wang, M. Ahn, S. Hong, Hcr-net: A
hybrid of classification and regression network for object pose estimation.,
in: IJCAI, 2018, pp. 1014–1020.

[10] M. Rad, V. Lepetit, BB8: A scalable, accurate, robust to partial occlu-
sion method for predicting the 3d poses of challenging objects without
using depth, in: 2017 IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 3848–3856. doi:10.1109/ICCV.2017.413.

[11] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, N. Navab, SSD-6D: Making
rgb-based 3d detection and 6d pose estimation great again, in: 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 1530–
1538. doi:10.1109/ICCV.2017.169.

[12] B. Tekin, S. N. Sinha, P. Fua, Real-time seamless single shot 6d object pose
prediction, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 292–301.

[13] X. Zhang, Z. Jiang, H. Zhang, Real-time 6d pose estimation from a single
rgb image, Image and Vision Computing 89 (2019) 1–11.

[14] S. Peng, Y. Liu, Q. Huang, X. Zhou, H. Bao, Pvnet: Pixel-wise voting
network for 6dof pose estimation, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4561–4570.

[15] Y. Hu, J. Hugonot, P. Fua, M. Salzmann, Segmentation-driven 6d object
pose estimation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 3385–3394.

[16] A. Rubio, M. Villamizar, L. Ferraz, A. Penate-Sanchez, A. Ramisa,
E. Simo-Serra, A. Sanfeliu, F. Moreno-Noguer, Efficient monocular pose
estimation for complex 3d models, in: 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2015, pp. 1397–1402. doi:

10.1109/ICRA.2015.7139372.

[17] L. Svrm, O. Enqvist, M. Oskarsson, F. Kahl, Accurate localization and pose
estimation for large 3d models, in: 2014 IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 532–539. doi:10.1109/CVPR.

2014.75.

[18] F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, 3d object modeling and
recognition using local affine-invariant image descriptors and multi-view
spatial constraints, International Journal of Computer Vision 66 (3) (2006)
231–259. doi:10.1007/s11263-005-3674-1.
URL https://doi.org/10.1007/s11263-005-3674-1

[19] M. Oberweger, M. Rad, V. Lepetit, Making deep heatmaps robust to par-
tial occlusions for 3d object pose estimation, European Conference on Com-
puter Vision.

20

http://dx.doi.org/10.1109/ICCV.2017.413
http://dx.doi.org/10.1109/ICCV.2017.169
http://dx.doi.org/10.1109/ICRA.2015.7139372
http://dx.doi.org/10.1109/ICRA.2015.7139372
http://dx.doi.org/10.1109/CVPR.2014.75
http://dx.doi.org/10.1109/CVPR.2014.75
https://doi.org/10.1007/s11263-005-3674-1
https://doi.org/10.1007/s11263-005-3674-1
https://doi.org/10.1007/s11263-005-3674-1
http://dx.doi.org/10.1007/s11263-005-3674-1
https://doi.org/10.1007/s11263-005-3674-1


[20] M. A. Fischler, R. C. Bolles, Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartogra-
phy, Communications of the ACM 24 (6) (1981) 381–395.

[21] V. Lepetit, F. Moreno-Noguer, P. Fua, EPnP: An accurate o(n) solution to
the pnp problem, International Journal of Computer Vision 81 (2) (2008)
155. doi:10.1007/s11263-008-0152-6.
URL https://doi.org/10.1007/s11263-008-0152-6

[22] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
N. Navab, Model based training, detection and pose estimation of texture-
less 3d objects in heavily cluttered scenes, in: K. M. Lee, Y. Matsushita,
J. M. Rehg, Z. Hu (Eds.), Computer Vision – ACCV 2012, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 548–562.

[23] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, C. Rother,
Learning 6d object pose estimation using 3d object coordinates, in:
D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Computer Vision –
ECCV 2014, Springer International Publishing, Cham, 2014, pp. 536–551.

[24] C. P. Lu, G. D. Hager, E. Mjolsness, Fast and globally convergent pose
estimation from video images, IEEE Transactions on Pattern Analysis and
Machine Intelligence 22 (6) (2000) 610–622. doi:10.1109/34.862199.

[25] Z. Cao, Y. Sheikh, N. K. Banerjee, Real-time scalable 6dof pose estimation
for textureless objects, in: 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 2441–2448. doi:10.1109/ICRA.2016.
7487396.

[26] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, V. Lep-
etit, Gradient response maps for real-time detection of textureless objects,
IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (5)
(2012) 876–888. doi:10.1109/TPAMI.2011.206.

[27] M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips,
M. Lecce, K. Daniilidis, Single image 3d object detection and pose esti-
mation for grasping, in: 2014 IEEE International Conference on Robotics
and Automation (ICRA), 2014, pp. 3936–3943. doi:10.1109/ICRA.2014.
6907430.

[28] A. Kendall, M. Grimes, R. Cipolla, PoseNet: A convolutional network
for real-time 6-dof camera relocalization, in: 2015 IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 2938–2946. doi:

10.1109/ICCV.2015.336.

[29] Y. Xiang, T. Schmidt, V. Narayanan, D. Fox, PoseCNN: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,
in: Robotics: Science and Systems (RSS), 2018.

21

https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1109/34.862199
http://dx.doi.org/10.1109/ICRA.2016.7487396
http://dx.doi.org/10.1109/ICRA.2016.7487396
http://dx.doi.org/10.1109/TPAMI.2011.206
http://dx.doi.org/10.1109/ICRA.2014.6907430
http://dx.doi.org/10.1109/ICRA.2014.6907430
http://dx.doi.org/10.1109/ICCV.2015.336
http://dx.doi.org/10.1109/ICCV.2015.336


[30] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, R. Triebel, Im-
plicit 3d orientation learning for 6d object detection from rgb images, in:
European Conference on Computer Vision, Springer, 2018, pp. 712–729.

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg,
SSD: Single shot multibox detector, in: ECCV, 2016.

[32] A. Newell, K. Yang, J. Deng, Stacked hourglass networks for human pose
estimation, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer
Vision – ECCV 2016, Springer International Publishing, Cham, 2016, pp.
483–499.

[33] O. Moolan-Feroze, A. Calway, Predicting out-of-view feature points for
model-based camera pose estimation, in: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 82–88.
doi:10.1109/IROS.2018.8594297.

[34] K. He, G. Gkioxari, P. Dollr, R. Girshick, Mask r-cnn, in: 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 2980–
2988. doi:10.1109/ICCV.2017.322.

[35] Y. He, C. Zhu, J. Wang, M. Savvides, X. Zhang, Bounding box regression
with uncertainty for accurate object detection, in: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[36] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, J. Sun, Cascaded Pyramid
Network for Multi-Person Pose Estimation.

[37] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, S. J. Belongie,
Feature pyramid networks for object detection., in: CVPR, Vol. 1, 2017,
p. 4.

[38] K. Sun, B. Xiao, D. Liu, J. Wang, Deep high-resolution representation
learning for human pose estimation, in: CVPR, 2019.

[39] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, S. Birchfield,
Deep object pose estimation for semantic robotic grasping of household
objects, in: Conference on Robot Learning (CoRL), 2018.
URL https://arxiv.org/abs/1809.10790

[40] G. Lin, C. Shen, Q. Shi, A. van den Hengel, D. Suter, Fast supervised
hashing with decision trees for high-dimensional data, in: 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014, pp. 1971–1978.
doi:10.1109/CVPR.2014.253.

[41] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, Z. Zhang, MXNet: A flexible and efficient machine learning
library for heterogeneous distributed systems, in: Neural Information Pro-
cessing Systems, Workshop on Machine Learning Systems, 2015.

22

http://dx.doi.org/10.1109/IROS.2018.8594297
http://dx.doi.org/10.1109/ICCV.2017.322
https://arxiv.org/abs/1809.10790
https://arxiv.org/abs/1809.10790
https://arxiv.org/abs/1809.10790
http://dx.doi.org/10.1109/CVPR.2014.253


[42] M. Rad, M. Oberweger, V. Lepetit, Feature mapping for learning fast and
accurate 3d pose inference from synthetic images, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
4663–4672.

23


	Introduction
	Related Work
	RGB-based 6D pose estimation.
	Keypoint Localization
	2D Object Detection

	Approach
	Keypoint Representation
	Network Architecture
	Training Procedure
	Inference

	Experiments
	Evaluation Metrics
	Ablation Study
	Keypoint Representation.
	Network Architecture.
	Confidence Voting Keypoint NMS.

	Comparison with the State-of-the-art Methods
	Results on the LINEMOD Dataset
	Results on the OCCLUSION Dataset


	Conclusion

