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Abstract—This paper presents a novel vision-based method
to solve the 6-degree-of-freedom pose estimation problem of
textureless space objects from a single monocular image. Our
approach follows a coarse-to-fine procedure, utilizing only shape
and contour information of the input image. To achieve invari-
ance to initialization, we select a series of projection images which
are similar to the input image and establish many-to-one 2D-3D
correspondences by contour feature matching. Intensive attention
is focused on outlier rejection and we introduce an innovative
strategy to fully utilize geometric matching information to guide
pose calculation. Experiments based on simulated images are
carried out, and the results manifest that pose estimation error
of our approach is about 1% even in situations with heavy outlier
correspondences.

Index Terms—Pose estimation, textureless space object, con-
tour feature matching, outlier rejection.

I. INTRODUCTION

DETERMINING the pose parameters of space objects
is one of the fundamental tasks in space-based space

surveillance systems [1]. The United States, Russia and
Canada have invested massive resources in developing their
surveillance capabilities to achieve Space Situational Aware-
ness (SSA) [2]. The Space Based Space Surveillance (SBSS)
Satellite [3], launched in September 2010, is a significant step-
ping stone toward a functional space-based space surveillance
constellation and the future of space superiority. In February
2013, the Near-Earth Object Surveillance Satellite (NEOSSat)
[4] was launched, which is the first space telescope dedicated
to detecting and tracking asteroids and satellites. With the
rapid improvements of high resolution imaging sensors, e.g.
sCMOS sensors [5] and the Segmented Planar Imaging De-
tector for Electro-optical Reconnaissance (SPIDER) [6], the
optical imaging system has been widely used in space surveil-
lance for many applications such as automatic rendezvous and
docking [7], position and pose estimation [1], [8]–[14], on-
orbit self-servicing [15], [16], etc. Therefore, it is practicable
and promising to solve the pose estimation problem of space
objects by means of vision-based methods.

Pose estimation aims at retrieving the 6-degree-of-freedom
(6-DoF) transformation of the object coordinate frame with
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reference to the camera coordinate frame. It is an intensively
discussed issue in computer vision, augmented reality and
robotic navigation [17]–[20]. Typical pose estimation algo-
rithms can be roughly classified into monocular approaches
and binocular approaches. Due to the long distances from
the space objects to the cameras, binocular vision-based ap-
proaches cannot generate accurate range information for fur-
ther calculation. Whereas the monocular approaches have less
restrictions on the input, although they may require some time-
consuming processes like feature extraction. For monocular
approaches, the pose estimation problem is commonly divided
into two independent parts, i.e. determining 2D-3D point or
line correspondences, and estimating pose parameters based on
these correspondences. The latter can be solved by the well
studied Perspective-n-Point (PnP) or Perspective-n-Line (PnL)
algorithms [22]–[28], and the main difficulty lies in the estab-
lishment of certain correspondences between 2D images and
3D models. Focusing on this issue, we can further categorize
the monocular methods into three groups: geometric methods,
appearance-based methods and iterative methods. Geometric
methods [17], [18] rely on optical markers on target spacecraft
or local feature matching methods to achieve correspondences.
While appearance-based methods aim at bypassing the sub-
problem of determining 2D-3D correspondences using the
techniques of template matching [19] or machine learning [1],
[11], [12]. Another alternative, iterative methods [13], [14],
[21], allows for mismatches in the 2D-3D correspondences at
the start of the process, and attempts to refine the matching
accuracy iteratively. The advantages of all the three kinds of
methods are integrated in our approach to accomplish a robust
and accurate pose estimation algorithm capable of dealing with
textureless space objects.

In this work, we consider distinctive characteristics of the
space object images: (i) lack of texture; (ii) change in scale due
to the variance in imaging distance; (iii) simple background.
Because of the first characteristic, most existing geometric
approaches are not practicable. On the other hand, relative
simple background of space object images makes it easy to
segment or extract contours. Under this condition, we develop
a vision-based pose estimation approach for textureless space
objects that only utilizes shape and contour information of
the input monocular images. Moreover, intensive attention is
focused on outlier rejection which is essential to the accuracy
and convergence of proposed algorithm. By introducing a
novel strategy to utilize geometric matching information for
rejecting outliers and measuring the relative correctness among
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inliers, we explore the inner connections between the two sub-
processes of pose estimation and integrate them effectively,
which has not been attempted to our knowledge.

The rest of the paper is organized as follow. Section II
investigates the valuable works in pose estimation for space
objects and illustrates the originalities of our proposed method.
Section III details each component of our method from prob-
lem formulation to the PnP solution. Section IV presents the
simulation experiments and the results. Finally conclusions are
summarized in Section V.

II. RELATED WORK

Most previous studies on pose estimation for space objects
are based on reasonable assumptions of priori knowledge
and input forms. The priori knowledge generally includes
calibrated cameras and available 3D models, and the input
forms vary from 2D monocular images to 3D point clouds.
Aghili et al. [8] purpose an Iterative Closest Point algorithm
combined with Kalman filter to achieve fast convergence for
pose estimation and tracking of space objects. Much recently,
Opromolla [9] integrates template matching and the concepts
of principal component analysis for pose acquisition, restrict-
ing both the computational cost and data storage to adapt to
the on-board situation. These two works are both designed to
process 3D point clouds provided by scanning or stereovision
systems. However, due to the long imaging distances, the
range information can not be fully reliable. It would be more
considerate to take the error of 3D point clouds into ac-
count. Compared with 3D point clouds, 2D monocular images
have less restriction on the data collecting facilities, and the
methods based on 2D images are direct and complete. Liu
[10] specializes in cylinder-shaped space objects and applies
ellipse extraction to determine pose parameters. Nevertheless
the generalization ability still remains to be improved. Zhang
[1], [11], [12] introduces homeomorphic manifold analysis
and kernel regression-based methods to the aerospace area
to estimate relative poses of space objects. In his successive
works, however, training and testing of the machine learning
models are restricted to image sets containing only 1-DoF and
2-DoF rotation due to the explosion of possible combinations
in 6-DoF pose space.

In [13], Leng et al. propose a contour-based approach
which employs distance map to achieve correspondences and
adopts the orthogonal iteration (OI) algorithm to calculate
pose parameters iteratively for aircraft. His work validates the
feasibility of retrieving pose parameters using image contours,
although a reliable initialization which is relatively close to
the ground truth of pose parameters is usually needed. This
limitation is largely caused by the insufficient capacity of dis-
tance map for contour matching. As an improvement, previous
work in [14] takes account of the curvature of contour points
to establish 2D-3D correspondences. Like the approaches
we have discussed above, however, [13] and [14] give little
attention to the problem of outlier rejection. This task is only
considered as a preliminary process based on the technique of
Random Sample Consensus (RANSAC) [35], which is time-
consuming and offers no optimality guarantees. Moreover,

most PnP algorithms resorting to RANSAC for outlier rejec-
tion could be trapped in local minima. This issue is extensively
discussed in [23]. Ferraz et al. explore the algebraic error of
linear PnP formulation and progressively reject outliers with
a simple loss function. His proposed algorithm, REPPnP [23],
has remarkably accelerated the process of outlier rejection.
Nonetheless it still relies on the abundant data of 2D-3D
correspondences and only labels the correspondences in a
binary mode.

Focusing on the limitations of previous studies, we seek to
make original improvements to accomplish better accuracy and
robustness. The main contributions of our proposed approach
are threefolds:

(i) We propose a complete 2D image-based 6 DoF pose
estimation approach for textureless space objects utilizing
shape and contour information. Proposed approach can achieve
high accuracy not relying on good initialization or massive
training data.

(ii) We establish many-to-one 2D-3D correspondences and
propose an innovative strategy to calculate confidence prob-
abilities, which are demonstrated to be effective in rejecting
outliers without inefficient RANSAC.

(iii) We measure the relative correctness among inliers
utilizing the confidence probabilities to improve pose accuracy,
which can neither be achieved by the PnP solutions combined
with RANSAC nor REPPnP. To our knowledge, proposed
algorithm is the first attempt at utilizing geometric matching
information to guide pose calculation. In this way we integrate
the two sub-processes of pose estimation effectively. This
innovative strategy may also help to avoid local minima
since we introduce strong priori of reliable correspondences
to restrict the pose solution space.

III. PROPOSED ALGORITHM

This section presents the details and theoretical explana-
tions of proposed algorithm. Assuming calibrated cameras
and available 3D models of space objects, our goal is to
retrieve the transformation of the object coordinate frame with
reference to the camera coordinate frame. Our approach fol-
lows a coarse-to-fine procedure. Specifically, an image gallery
which contains about 3000 images projected from sampled
viewpoints is constructed in advance. Given an input image,
we select the most similar subset of the image gallery by
taking Hu invariant moments [30] as similarity measurement
in the coarse step. Then in the fine step, taking the projection
images as intermediaries, we establish many-to-one 2D-3D
correspondences between the input image points and vertices
in the 3D model by ORB feature matching and color indexing.
Generally, these correspondences may include mismatches. We
seek to remove them by introducing coefficients to represent
the confidence probabilities of the 2D-3D correspondences.
All the coefficients form a diagonal weight matrix, which is
combined with the OI algorithm to robustly calculate the rota-
tion and translation parameters within an iterative framework.
The overall scheme of our approach is presented in Fig. 1.
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Fig. 1. Overall scheme of our proposed pose estimation method for
textureless space objects.

A. Problem Formulation

The configuration of the coordinate frames is presented in
Fig. 2. Superscripts c, p and o indicate camera coordinate
frame, image plane coordinate frame and object self-centered
coordinate frame, respectively. The camera coordinate frame
OcXcY cZc and the object self-centered coordinate frame
OoXoY oZo are 3D coordinate frames, while the image plane
coordinate frame denoted by Ω ⊂ R2 is a 2D coordinate frame
fixed at Zc = 1 with its origin at the top left corner. The
camera is modeled as an ideal perspective projection.

The object self-centered coordinate frame and the camera
coordinate frame are related by the rigid transformation

xc = Rxo + t (1)

where xc and xo represent the coordinates of the same 3D
vertex with reference to the camera frame and with reference
to the object frame, respectively. R is a 3× 3 rotation matrix
which rotates the object frame to align with the camera frame
and t is the translation vector equaling OcOo. The image
plane frame and object self-centered frame are related by the
equation (

xp

1

)
∼ K(R|t)

(
xo

1

)
(2)

Fig. 2. Configuration of the coordinate frames.

where symbol ’∼’ means equal in homogeneous manner, and
K is the 3 × 3 inner calibration matrix known as a priori
knowledge. Proposed pose estimation algorithm attempts to
establish 2D-3D correspondences between the image points
{xp} and the 3D model vertices {xo}, so that we can retrieve
an optimal solution of R and t by solving a set of equation
(2).

B. Selecting Subset of Image Gallery

Proposed approach first generates an image gallery contain-
ing 3042 images projected from sampled viewpoints. Regard-
less of changes in translation and scale, we align the centers
of the 3D models with Z axis of the camera frame and rotate
the 3D models to obtain projection images. The rotation is
formulated in the form of Euler angles, i.e. pitch angle θ, yaw
angle ψ and roll angle φ , and rotate axes are OoXo, OoY o

and OoZo, respectively. Since there usually exists certain
symmetry in the structure of space objects, we sample the
yaw angle ψ and pitch angle θ in the range of [−90◦, 90◦]
at intervals of 15◦. The roll angle φ is sampled in the range
of [−180◦, 180◦) with a span of 20◦. OpenGL functions are
used to draw 3D models and project images. Specifically, the
R, G, B values of a vertex are determined as follows:

10× i = R× 65536 +G× 256 +B (3)

where i refers to the index of the vertex in 3D models. In
this way we are able to deal with the 3D models including
one million vertices which is large enough for the usual
cases. The color pattern of OpenGL is set to be smooth, so
that the color of a point between two vertices is determined
by the distances from the two ends. This color information
generated will be useful in the process of establishing 2D-3D
point correspondences. In the coarse step, however, we only
utilize shape information, therefore we convert each colored
projection image into a binary image. We also calculate in
advance Hu moments [30] for each binary image to decrease
the computational cost of the subsequent comparison process.

Our approach takes Hu moments as similarity measurement
since they are invariant to rotation, translation and changing in
scale. Meanwhile, the computational cost is decreased sharply
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(a) SIFT (b) SURF (c) ORB

Fig. 3. Contour matching results for three local features. In each subfigure, the left contour is the contour of the input image, and the right one is the contour
of a projection image in the similar subset. We could see that SIFT can hardly extract keypoints in the contours, while the matching results for SURF are
obviously wrong. ORB performs best in the three local features, although we can still find some mismatching points when there is a mirror transformation
between the input image and the projection image.

owing to the binary form of images. In the coarse step we
first convert a gray-level input image into a binary image,
and calculate the Hu moments for comparison. The difference
between the binary input image I and each binary projection
image G in the image gallery is measured as follows:

diff(I,G) =

3∑
k=1

|hIk − hGk | (4)

where hk, k = 1, 2, 3 refers to the first three components of
the Hu moments. We select the images corresponding to the
least m value of diff(I,G) as the most similar subset of the
image gallery.

We have noticed that in many relative works [17] the initial
similar images are selected by means of machine learning
methods which perform excellently in terms of feature ex-
traction, especially for complex images. However, machine
learning methods may not suit our condition due to the
simplicity of the binary images.

C. Establishing 2D-3D Point Correspondences

Taking the similar subset images as intermediaries, we at-
tempt to establish 2D-3D correspondences between the points
in input images and the vertices of 3D models. Firstly, we
extract contours of the input images and the similar subset im-
ages using the Border following algorithm [32]. This process
is an easy task and the computational cost is negligible because
all the images have been converted into binary form. As
mentioned in subsection B, the colored projection images cor-
responding to the m binary subset images are useful here for
establishing 2D-3D correspondences. For each subset image,

we traverse all the contour pixels to check if the R,G,B values
in the corresponding colored projection image satisfy equation
(3). By color indexing, we achieve accurate intermediate 2D-
3D correspondences between the contours of subset images
and the vertices of the 3D models. These intermediate cor-
respondences are sparse because only 3D vertices of triangle
patches on the contour can be retrieved. Since all the images
in the subset are similar to the input images, we can deduce
that most vertices should appear in more than one projection
image. Therefore, there exist many-to-one correspondences
in the intermediate 2D-3D correspondences. Then we map
the contour points of subset images to input images points.
In this work we try three popular local features for contour
matching: SIFT [36], SURF [37] and ORB [29]. We extract
keypoints from the contours of input images and subset images
to establish 2D-2D point matchings. Fig. 3 presents matching
points extracted by the three features, indicating that ORB is
more suited for contour matching than the other two features
in our condition due to its binary pattern.

The ORB feature matching is a sparse point-to-point match-
ing containing mismatches. Some contour points in subset
images corresponding to 3D vertices may not be matched
in the primitive ORB feature matching results. So, as an
approximation in [33], we calculate the homography matrices
between the input images and the subset images using a
least-square algorithm. Generally, the pixel coordinate errors
caused by homography is acceptable when the translation
between the input image and the subset image is far smaller
than the imaging distance. So in our implementation, we set
the imaging distance to be more than ten times the size of
3D models, which accords with the long imaging distance
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Fig. 4. Illustration of establishing 2D-3D point correspondences

characteristic of space object images. Using each homography
matrix Hj , j = 1, 2, ...,m, we can calculate the input image
points corresponding to the contour points of subset images
by the following equation xjq

′

yjq
′

1

 ∼ Hj

 xjq
yjq
1

 , j = 1, 2, ...,m (5)

where [xjq, yjq]T refers to the qth contour point in the jth
subset image, and [xjq

′, yjq
′]T is the corresponding point in

the input image. Combining the intermediate 2D-3D corre-
spondences and equation (5), we achieve many-to-one 2D-
3D correspondences between the input image points and the
vertices of 3D models. Our process of establishing 2D-3D
correspondences is demonstrated in Fig. 4.

Establishing 2D-3D correspondences is a crucial process in
pose estimation algorithms, directly influencing the accuracy
of pose parameters. [17] supposes that 3D models contain
feature descriptors which are used in 3D reconstruction. This
prerequisite increases the complicity of the 3D models and
limits the application of the method. Assuming simple 3D
models containing only vertices and structure information,
our process of establishing 2D-3D correspondences is mostly
motivated by [13]. However, the algorithm in [13] utilizes only
one projection image as initialization and establishes 2D-2D
correspondences for all the contour points in the projection
image using distance map, and then back-projects them to
the 3D models by interpolation to achieve 2D-3D correspon-
dences. Such an strategy is not only a waste of computation,
but may also bring in errors in interpolation. As in [14], our
approach selects contour points of projection images which
directly correspond to the 3D vertices by color indexing, and
resorts to homography matrices to achieve many-to-one 2D-3D
correspondences between the input images and the 3D models.

Fig. 5 presents typical many-to-one correspondences
achieved by our approach. It can be seen that there exist
mismatches in the 2D-3D correspondences. Thus, we seek to
reduce their impact on the accuracy of pose parameters by

constructing a weight matrix to reject outliers and measure
the relative correctness among inliers.

D. Constructing Weight Matrix

The weight matrix W is a n×n diagonal matrix where n is
the number of 2D-3D correspondences. The diagonal element
ωk, k = 1, 2, · · · , n is the confidence probability of the kth
correspondence.

W =


ω1

ω2

. . .
ωn

 (6)

Since we have obtained several 2D corresponding points in
the input image for each 3D vertex, the tasks mainly lie in
selecting the exact 2D point and determining the confidence
probability for this 2D-3D correspondence. First, for each
3D vertex, we cluster the corresponding 2D points by the
method in [31] which can adaptively determine the number
of categories and the centers. Then we propose a formula to
calculate the confidence probability of each cluster. In this
work, we consider three factors that influence the confidence
probability of a 2D point cluster:

(i) the correctness of the homography matrices for 2D
points;

(ii) the concentration of the 2D points in the cluster;
(iii) the number of 2D points in the cluster.
In terms of the first factor, we define a coefficient α for

each subset image. This coefficient is inversely proportional
to the reprojection error to measure the correctness of the ho-
mography matrix. If we obtain Qj , j = 1, 2, · · · ,m matching
points between the input image and the jth subset image, αj

will be formulated as follows:

αj = Qj

/
Qj∑
q=1

√
(x̂jq − xjq ′)2 + (ŷjq − yjq ′)2,

j = 1, 2, · · · ,m
(7)

where (x̂jq, ŷjq)T is the matching point in the input image, and
(xjq

′, yjq
′)T is calculated by equation (5). Normalization is

indispensable to make αj play the role of relative correctness.

αj =
αj

max
1≤j≤m

αj
, j = 1, 2, · · · ,m (8)

Each corresponding 2D point in the input image shares the
same relative correctness with the projection image through
which the point is calculated. The maximal αj of the 2D points
in a cluster is selected as the correctness of the cluster.

The concentration of a cluster is measured by the average
distance from the 2D points to the cluster center:

βj =


0, if nj = 1

1−

nj∑
i=1
||pi−pcenter||2

nj

/
radius, nj > 1

j = 1, 2, · · · , Ncluster

(9)

where nj , j = 1, 2, · · · , Ncluster is the number of 2D points
in the jth cluster, and Ncluster is the number of clusters.
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(a) concentrated and right (b) concentrated but wrong (c) scattered and including right
matchings

(d) scattered but no right match-
ings

Fig. 5. Four typical distributions of 2D points corresponding to one vertex. The white circles represent calculated corresponding 2D points in the input
image, and the red points are the ground truth positions of the 3D vertices.

radius is a hyperparameter representing the maximal range of
a cluster, which is set to 20 pixels in our implementation. We
set the concentration value of isolated points to zero, which
can be interpreted in the way that the closest 2D point lies
beyond the cluster range.

The third factor representing the number of points in the
cluster is directly calculated as follows:

γj =
nj

Ncluster∑
j=1

nj

, j = 1, 2, · · · , Ncluster (10)

Now the three factors α, β and γ are all in the range of [0, 1],
and we multiply them to represent the confidence probabilities
of the clusters. Logarithmic function is utilized to balance the
effects of the three factors.

ωj = αj × ln(e− 1 + βj)× γj ,
j = 1, 2, · · · , Ncluster

(11)

For each cluster we calculate a confidence probability ωj ,
then we select the maximal ωj as the diagonal element in the
weight matrix W .

ω̂k = max
1≤j≤Ncluster

ωj , k = 1, 2, · · · , n (12)

The input image point corresponding to the 3D vertex is
calculated as the weighted average of 2D points in the cluster
with the maximal ω. Then we adjust the calculated 2D point
to the nearest contour point measured by Euclidean distance.

The confidence probability defined above contributes to
distinguish the typical distributions of 2D points manifested in
Fig. 5. For cases (a) and (c), the values of α should be much
larger than those in cases (b) and (d). Depending on the second
and the third factors, we can select the cluster including the
right corresponding 2D point in case (c). To reject outliers,
we set a threshold δ which defines the minimal confidence
probability for inlier correspondences.

ω̂k =

{
ω̂k, ω̂k ≥ δ
0, ω̂k < δ

(13)

For each many-to-one 2D-3D correspondence we repeat
the process above, and finally we achieve one-to-one 2D-3D
correspondences and a weight matrix W representing confi-
dence probabilities which will be used to guide subsequent
PnP algorithm.

It should be noticed that most monocular pose estimation
algorithms divide the whole process into two independent
parts, i.e. establishing 2D-3D correspondences and calculating
pose parameters. They simply rely on RANSAC and the
robustness of PnP algorithms to reject outlier correspondences.
In contrast, we seek to explore geometric factors in estalishing
2D-3D correspondences to guide pose calculation. We propose
an innovative strategy of calculating confidence probabilities
to reject outliers without inefficient RANSAC. Further, we
measure the relative correctness among inliers to improve pose
accuracy, which can neither be achieved by the PnP solutions
combined with RANSAC nor REPPnP.

E. Iterative Framework

Proposed approach relies on a iterative framework to im-
prove correspondence correctness and pose accuracy gradually.
We refer to the OI algorithm [22] which is fast and numerically
precise, and integrate it with the weight matrix W to solve the
PnP problem. Due to the introduction of W , the minimization
objective function has become:

E(R, t) =

n∑
i=1

ωi||(I− V̂i)(Rxo
i + t)||22 (14)
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where

V̂i =

(
xp
i

1

)(
xp
i

1

)T

(
xp
i

1

)T (
xp
i

1

) (15)

represents the line-of-sight projection matrix.
As a result, the translation vector is formulated as follows:

t(R) = (

n∑
i=1

ωi(I− V̂i))
−1

n∑
i=1

ωi(V̂i − I)Rxo
i (16)

while R could be calculated iteratively. Assuming that R(k)

has been achieved, we define

yi(R
(k))

def
= V̂i(R

(k)xo
i + t(R(k))) (17)

y(R(k))
def
=

1
n∑

i=1

ωi

n∑
i=1

ωiyi(R
(k)) (18)

xo def
=

1
n∑

i=1

ωi

n∑
i=1

ωix
o
i (19)

and M plays the role of the cross-covariance matrix:

M(R(k))
def
=

n∑
i=1

ωi(yi − y)(xo
i − xo)T (20)

R(k+1) is formulated as follow according to [22]:

svd(M(R(k))) = U
∑

VT (21)

R(k+1) = UVT (22)

In proposed algorithm we combine the confidence proba-
bilities of the 2D-3D correspondences and the OI algorithm
to estimate pose parameters without RANSAC. It is worth
mentioning that the original OI algorithm is sensitive to
local minima. In practical applications, it always demands an
exploration of the solution space to find optimal solutions. By
weighting the 2D-3D correspondences in the original OI algo-
rithm, we introduce strong priori of reliable correspondences
to restrict the pose solution space, which may help to avoid
local minima.

We project the 3D model from the estimated pose to obtain
a new projection image and calculate Intersection over Union
(IoU) score between the projection image and the input image.
If it is closer to the input image than the subset images,
we will replace the least similar subset image with the new
projection image. In next iteration, we update both the 2D-
3D correspondences and the weight matrix, then repeat the
calculations above. Otherwise we just output R and t which
project the most similar image as final pose results. The
detailed termination strategy is shown in Algorithm 1.

Algorithm 1 Termination strategy.
Notation: θ: 6-DoF pose parameters; vmin: the minimal IoU

score between the input image and the subset images; p:
”patience”, the number of times to observe lower IoU
before stop; smax: The maximal IoU of the calculated
projection images;

Output: θ∗: Estimated pose parameters;
1: initial i = 0 and smax = 0;
2: while i < p do
3: calculate θ using weighted OI algorithm;
4: s← IoU(new projection image of θ)
5: if s < vmin then
6: stop;
7: else
8: replace the least similar subset image with the new

projection image;
9: update vmin;

10: if s > smax then
11: i← 0;
12: smax ← s;
13: θ∗ ← θ;
14: else
15: i← i+ 1;
16: end if
17: end if
18: end while

IV. EXPERIMENT

In this section, we evaluate the performance of proposed
pose estimation method in terms of accuracy and robustness.
All the codes involved in our algorithm are implemented in
C++ and run on a PC with 3.4 GHz CPU and 16 GB RAM.
We use three typical textureless space object models for test:
A2100, Earth Observing-1 (EO1) and TianGong, which are
shown in Fig. 6. An ideal perspective camera is simulated by
OpenGL with image size 400×400 pixels and focal length 200
pixels. As mentioned in Problem Formulation, the image
plane locates at Zc = 1, and we set the origins of the space
object models at (0, 0, 20) in the camera coordinate frame. The
input images in our experiments are generated by simulation
with random pose parameters. The three Euler angles are in
the range of [−90◦, 90◦], and the deviations of translation in
x, y, z directions are in the range of [−5, 5]. The simulated
images may not be exactly the same as those acquired by
optical sensors in space. However, the experimental results
on simulated data can still validate the capability of proposed
approach on real-world data to some extent since we only
utilize shape and contour information.

The rotation error and translation error are defined as in
[17]:

Er = ||quat(R)− quat(Rtrue)||/||quat(Rtrue)|| (23)

Et = ||t− ttrue||/||ttrue|| (24)

in which the rotations are presented in the form of quaternions
for concision. Rtrue and ttrue denote the ground truth rotation
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(a) A2100 (b) EO1 (c) TianGong

Fig. 6. 3D models used in our experiments. The number of vertices are
2749, 6536 and 5736 respectively.

and translation, respectively, and R, t the estimated pose
parameters.

A. Selecting Similar Image Subset

The number of images in the similar subset is an important
parameter in the coarse step. If m is too small, we could not
guarantee that the subset contains at least one image which is
close enough to the input image. Meanwhile, a too large m
may introduce unreliable projection images to the subset and
increase computational load. The running time of proposed
algorithm is analyzed in Fig. 7. In initialization, we calculate
Hu moments for 3042 binary projection images, preprocess
the input image, and select the similar subset containing m
projection images. In the first calculation, we preform ORB
matching between the input image and m subset images. In
latter iterations, we just need to update the ORB matching
results because only one subset image is replaced in each
iteration. As shown in Fig. 7a, the running time of proposed
algorithm increases as m grows, which is mainly caused by
the first calculation. In Fig. 7b, we can see that ORB matching
takes most of the running time of the first calculation.

We identify the impact of m on the accuracy of pose
parameters in Fig. 8. The value of m is sampled from 2 to
20, and each point is an average of 50 independent tests. We
can see in Fig. 8 that when the value of m is between 8
and 12, the mean rotation and translation errors of the three
models remain at a relative low level. Hence, considering the
computational cost and pose accuracy, we fix the value of m
at 12 in subsequent experiments.

B. Accuracy

We compare proposed approach with Leng [13], Zhang [14]
and state-of-the-art PnP solutions combined with RANSAC.
The idea of using contour feature is inspired by [13], although
we have improved much based on it. Leng et.al resort to
distance map to establish 2D-3D correspondences which is
heavily dependent on a good initialization. Therefore, we
select the most similar subset image as the initialization for
[13] and [14]. The comparison results are presented in Table I.
Our approach converges to the ground truth of pose parameters
faster owing to the capability of ORB feature for contour
matching and the strategy utilizing geometric factors to reject
outliers. The errors of three Euler angles achieved by our
approach are less than 1◦ and the translation error is about 1%.

The average iteration times of proposed approach is almost
half of those of [13] and [14], nevertheless the average running
time is only slightly reduced, which implies that the efficiency
of our approach still needs to be improved. In addition, Leng
et.al uses all the contour pixels to establish correspondences,
while we select just some accurate ones as in [14], hence the
number of correspondences of our algorithm is much smaller.

TABLE I
COMPARISON AMONG OUR ALGORITHM, [13] AND [14] IN ACCURACY

AND EFFICIENCY

Leng [13] Zhang [14] Ours
Average iteration times 33.714 44.714 19.429

Running time(s) 1.467 1.311 1.115
Error of pitch(degree) 0.693 0.352 0.411
Error of yaw(degree) 1.033 0.886 0.653
Error of roll(degree) 1.540 0.301 0.244

Er 0.02062 0.00944 0.00788
Et 0.02378 0.00541 0.01327

Number of correspondences 613.33 60.45 60.45

TABLE II
COMPARISON OF THREE STRATEGIES FOR WEIGHTING 2D-3D

CORRESPONDENCES.

Weighted OI Binary weighted OI OI
Error of pitch(degree) 0.644 1.545 21.025
Error of yaw(degree) 0.963 1.465 14.641
Error of roll(degree) 0.471 0.683 6.926

Er 0.01196 0.02197 0.24805
Et 0.01466 0.02326 0.20249

One main contribution of proposed approach is that we
explore the geometric factors in establishing 2D-3D corre-
spondences to guide pose calculation. We design experiments
to validate the effectiveness of the weight matrix in rejecting
outliers and improving accuracy. In Table II, we compare three
different strategies for constructing the weight matrix, namely
weighted OI (proposed), binary weighted OI (proposed), and
the original OI algorithm. For the original OI, the weights are
all set to 1. For the binary weighted OI, the weights for inliers
are all set to 1. The pose errors of the original OI are far larger
than those of weighted OI and binary weighted OI, which
demonstrates the effectiveness of proposed weight matrix in
outlier rejection. By setting a threshold to the confidence
probabilities of 2D-3D correspondences, we can reject most
outliers without inefficient RANSAC. Further, the weighted OI
strategy performs better than the binary weighted OI strategy,
indicating that measuring the relative correctness among inliers
also helps to improve pose accuracy.

We select several state-of-the-art PnP algorithms combined
with RANSAC: (RANSAC+P3P [24]); (RANSAC + RP4P
+ RPnP [25]); (RANSAC + P3P [24] + ASPnP [26]); and
(RANSAC + P3P [24] + OPnP [27]) , to deal with the 2D-3D
correspondences extracted by our algorithm. As illustrated in
Fig. 9, proposed algorithm performs best in accuracy. Since all
the methods deal with the same 2D-3D correspondences, we
can reasonably attribute the capability to the weight matrix
constructed with the geometric factors in establishing 2D-
3D correspondences. Proposed algorithm has two advantages
over the RANSAC-based PnP solutions. Firstly, we reject out-
liers efficiently without RANSAC. Secondly, we measure the
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Fig. 7. Running time of proposed algorithm and the first iteration at different m.

Fig. 8. The impact of m on the accuracy of pose parameters

Fig. 9. Comparison in terms of accuracy of our algorithm with state-of-the-art
PnP solutions combined with RANSAC

Fig. 10. The rotation and translation error in different conditions of outlier
rate.

relative correctness among inliers to improve pose accuracy,
which cannot be achieved by the PnP solutions combined with
RANSAC. We have noticed REPPnP [23] which embeds the
outlier rejection scheme within the pose estimation pipeline,
nevertheless it does not perform well on our data. We suspect
that the reason mainly lies in that REPPnP is designed for a
large number of correspondences and the outlier rate of our
2D-3D correspondences is beyond its breakdown point.

In Fig. 10 we analyze the robustness of proposed algorithm
against outliers. We plot the rotation and translation errors with
reference to the outlier rate of the 2D-3D correspondences. The
outlier rate of our data varies from 46.67% to 84.91%, and
it is far higher than the breakdown point of REPPnP, which
is no more than 60% according to [23]. We can see in the
figure that the state-of-the-art PnP solutions combined with
RANSAC begin to fail at the outlier rate of 75 percent, while
proposed algorithm is still stable and accurate. These results
convincingly demonstrate that the confidence probabilities are
effective in distinguishing inliers and outliers. It is worth
mentioning that the confidence probabilities are continuous co-
efficients other than binary values, which can further indicate
the relative correctness of the inlier 2D-3D correspondences.
Hence, by measuring the relative correctness among inliers, we
introduce strong priori of reliable correspondences to restrict
pose solution space, which may help to avoid local minima and
achieve satisfactory pose results than RANSAC-based methods
do.



IEEE TRANSACTION ON AEROSPACE AND ELECTRONIC SYSTEMS 10

(a) Robustness against scale

(b) Robustness against lighting

(c) Robustness against noise

Fig. 11. Robustness tests of our approach against imaging degradation.

C. Robustness against Imaging Degradation

Aiming at the practical application to solve the pose esti-
mation of space objects, we test the robustness of proposed
approach against some typical imaging degradation factors
including noise, scale and lighting changes in space environ-
ment. First we test the performance of proposed approach in
different scales. The imaging scale is measured by the pixels
of space objects in the input images. The number of pixels
occupied by space objects varies from about 10000 to less
than 2000 in our experiments. Results in Fig. 11a indicate that
our approach is capable of dealing with input images with no
less than 4000 pixels occupied by space objects. When the
number of space object pixels descends to less than 3000, the
error of pose parameters increases sharply. The reason could
be that small objects reduce the precision in contour extraction
and feature matching. A preliminary process involving super
resolution reconstruction may be helpful; however, that is not
the focus of this paper.

The lighting condition is formulated as in [1], and the
lighting phase angle should not exceed 90◦ so that the space
objects can be visible. The lighting phase angle is sampled
in the range of [0◦, 90◦] at intervals of 10◦. The lighting
altitude angle is set to be 0◦, 60◦, 120◦ and 180◦. Since our
approach only utilizes the shape and contour information of
the input images, the changes in lighting condition have little
impact on the performance of our approach as long as the

Fig. 12. Validation of proposed algorithm on real-world images of TianGong.
The green curves are contours of calculated projection images.

complete contours can be extracted. In Fig. 11b, our approach
is illustrated to be stable when the lighting phase angle is less
than 60◦.

Zero-mean Gaussian white noise is added to the input
images for noise tests. The variance is sampled from 0.001
to 0.009 at intervals of 0.001. Theoretically, the introduction
of noise could largely influence the performance of contour
extraction and feature matching. As a consequence, the errors
of rotation parameters achieved by proposed approach increase
remarkably when the variance of Gaussian white noise is
bigger than 0.004. The breakdown point of translation against
noise is at about 0.006. Generally speaking, noise in the
input data, no matter 2D images or 3D point clouds, is a
problem for most existing pose estimation algorithms, and
a preliminary process of noise reduction is indispensable for
practical application.

D. Validation on Real-World Data

As far as we know, there hardly exist public datasets
of real space object images. Most relative researches are
based on simulated images or point clouds. Limited by the
access to real space object images, we evaluate our proposed
algorithm on simulated data. However, we add noise, scale and
illumination variations to the simulated images and validate the
robustness of proposed algorithm to some extent. In addition,
we take pictures of a solid model of TianGong spacecraft
in a darkroom. We use a parallel light to simulate the sun,
and we calibrate the camera intrinsic matrix by ourselves.
We validate the effectiveness of proposed algorithm on these
real-world images as shown in Fig. 12. Note that there exist
some differences between the elaborate solid model and the
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Projection Image
Input Image

Fig. 13. Illustration of pixel coordinate errors (the red line) caused by
homography matrix when 3D vertices are non-coplanar.

simplified CAD model, both in terms of shape and size. This
could lead to an increase of pose errors in our real-world
experiments.

V. CONCLUSION

In this paper, we have proposed a monocular vision-
based method to solve the 6-DoF pose estimation problem
of textureless space objects. Proposed approach is a complete
process independent of initialization, and has no constraints
on the shape of space objects. We explore geometric factors
in establishing 2D-3D correspondences by constructing the
weight matrix to guide pose calculation, which has not been
attempted to our knowledge. Apart from rejecting outliers
efficiently, we can further measure the relativeness correctness
among inliers which cannot be achieved by RANSAC-based
PnP solutions. We have demonstrated the effectiveness of
proposed approach for pose estimation on simulated data and
real-world data. Experimental results verify that our method
can accurately estimate the pose of textureless space objects
within a few iterations even in the heavy outlier situations.
Proposed method can be applied to fundamental missions in
space surveillance systems such as satellite tracking and on-
orbit servicing.

APPENDIX
PIXEL COORDINATE ERRORS CAUSED BY HOMOGRAPHY

MATRIX

As illustrated in Fig.13, we can calculate the homography
matrix H between two images of plane P . x1 is a projection
image point corresponding to p′, a 3D vertex outside plane
P . The true projection of p′ on the input image is x′2, and
the calculated point using homography matrix is x2. The 3D
coordinates of p and p′ in the camera frame o1 − xyz are:

p1 = dx1 =

 dx1x
dx1y
d

 , p′1 = d′x1 =

 d′x1x
d′x1y
d′

 (25)

where x1 is the homogeneous coordinate of image point x1,
d and d′ are constants representing the imaging depths. The

3D coordinates of p and p′ in the camera frame o2−xyz are:

p2 =Rp1+T = dRx1+T

=d

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 x1x
x1y
1

+

 t1
t2
t3


=

 d(r11x1x+r12x1y+r13)+t1
d(r21x1x+r22x1y+r23)+t2
d(r31x1x+r32x1y+r33)+t3


(26)

p′2 =Rp′1+T = d′Rx1+T

=d′

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 x1x
x1y
1

+

 t1
t2
t3


=

 d′(r11x1x+r12x1y+r13)+t1
d′(r21x1x+r22x1y+r23)+t2
d′(r31x1x+r32x1y+r33)+t3


(27)

The homogeneous coordinates of x2 and x′2 are:

x2 =


d(r11x1x+r12x1y+r13)+t1
d(r31x1x+r32x1y+r33)+t3
d(r21x1x+r22x1y+r23)+t2
d(r31x1x+r32x1y+r33)+t3

1

 ,
x′2 =


d′(r11x1x+r12x1y+r13)+t1
d′(r31x1x+r32x1y+r33)+t3
d′(r21x1x+r22x1y+r23)+t2
d′(r31x1x+r32x1y+r33)+t3

1


(28)

The image coordinate error caused by using homography
matrix is:

x2x
′
2 =

[
d′(r11x1x+r12x1y+r13)+t1
d′(r31x1x+r32x1y+r33)+t3

− d(r11x1x+r12x1y+r13)+t1
d(r31x1x+r32x1y+r33)+t3

d′(r21x1x+r22x1y+r23)+t2
d′(r31x1x+r32x1y+r33)+t3

− d(r21x1x+r22x1y+r23)+t2
d(r31x1x+r32x1y+r33)+t3

]

=

[
(d′−d)[(r11x1x+r12x1y+r13)t3+(r31x1x+r32x1y+r33)t1]
[d(r31x1x+r32x1y+r33)+t3][d′(r31x1x+r32x1y+r33)+t3]
(d′−d)[(r21x1x+r22x1y+r23)t3+(r31x1x+r32x1y+r33)t2]
[d(r31x1x+r32x1y+r33)+t3][d′(r31x1x+r32x1y+r33)+t3]

]

=

 (1− d
d′ )[(r11x1x+r12x1y+r13)

t3
d +(r31x1x+r32x1y+r33)

t1
d ]

[(r31x1x+r32x1y+r33)+
t3
d ][(r31x1x+r32x1y+r33)+

t3
d′ ]

(1− d
d′ )[(r21x1x+r22x1y+r23)

t3
d +(r31x1x+r32x1y+r33)

t2
d ]

[(r31x1x+r32x1y+r33)+
t3
d ][(r31x1x+r32x1y+r33)+

t3
d′ ]


(29)

Note that the rows of R are unit vectors and will not change
the length of x1. Therefore, when the elements of T are far
smaller than the imaging distance d, the pixel coordinate errors
caused by homography matrix will be close to zero.
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